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The dynamics of cavitation bubbles are important in many flows, but their small sizes and 
high number densities often preclude direct numerical simulation. We present a computa-
tional model that averages their effect on the flow over larger spatiotemporal scales. The 
model is based on solving a generalized population balance equation (PBE) for nonlinear 
bubble dynamics and explicitly represents the evolving probability density of bubble radii 
and radial velocities. Conditional quadrature-based moment methods (QBMMs) are adapted 
to solve this PBE. A one-way-coupled bubble dynamics problem demonstrates the efficacy 
of different QBMMs for the evolving bubble statistics. Results show that enforcing hyper-
bolicity during moment inversion (CHyQMOM) provides comparable model-form accuracy 
to the traditional conditional method of moments and decreases computational costs by 
about ten times for a broad range of test cases. The CHyQMOM-based computational model 
is implemented in MFC, an open-source multi-phase and high-order-accurate flow solver. 
We assess the effect of the model and its parameters on a two-way coupled bubble screen 
flow problem.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

Cavitating flows arise near ship propellers [1], in hydraulic machinery [2], over spillways [3], and during medical 
therapies like lithotripsy and histotripsy [4–6]. In these flows, polydisperse bubble clouds are generated directly through 
nucleation or break-up and shedding larger vapor regions. Directly simulating the flow of these dispersions is challenging 
since the associated bubble dynamics frequently occur at smaller length and time scales than the background flow [7].

In the dilute limit, a strategy for overcoming this scale separation recognizes that the dynamics of each bubble are unim-
portant compared to statistics of the bubble population. Ensemble phase-averaging [8,9], for example, results in equations 
for the continuous liquid face forced, in a two-way-coupled manner, by statistics of (typically) the bubble radius radial 
velocity. The associated bubble variables become stochastic, Eulerian fields. This contrasts against Lagrangian models that 
track, model, and average over samples of individual particles [10,11]. Unless the bubble populations are such that any small 
volume (compared to the mixture-averaged flow field variations) contains a sufficient number of bubbles to describe the 
statistics faithfully, these models simulate at best a single realization of a random process.

The population balance equation (PBE) represents the evolution of a dispersion’s probability (or number density function) 
according to a set of internal variables [12,13]. The internal variables must provide sufficient information to close each par-
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ticle’s dynamic and thermodynamic evolution. The PBE is commonly used to model the particle size distribution. It depends 
solely on particle motion, coagulation, and breakup [14–16], wherein the internal variables are the spatial coordinates and 
velocities. PBE-based models have successfully modeled flowing soot during combustion processes [17], aerosol sprays [18], 
and more. For oscillating bubbles, the internal variables must include the bubble radius, bubble radial velocity, and suffi-
cient information regarding the bubble contents, which can often characterize with a single equilibrium radius [7]. When 
appropriate, these three internal variables can be appended to those associated with relative motion, coalescence, and break 
up [19,20].

The current work formulates a PBE-based model for the distribution of bubble radius, radial velocity, and equilibrium 
radius. Once formulated, the PBE is a PDE in independent coordinates associated with each internal variable (as well as 
spatiotemporal coordinates associated with the continuous flow in which the bubbles reside). Solving this six-dimensional 
PDE via the method of lines is intractable. Instead, the method of moments represents and evolves the number density 
function via its statistical moments [21]. Other approaches to solving PBEs exist, like class [22,23], particle [24], and Monte 
Carlo [25,26] methods, though these are comparatively inefficient for multivariate PBEs or large simulations [27].

The ensemble phase-averaging methods determine the governing flow equations for oscillating bubble populations. As 
described in section 2, we develop an Euler–Euler approach to represent the flow and the averaged bubble dynamics at the 
sub-grid level [10,28]. This method is two-way-coupled between the dispersed bubbles and suspending liquid. In particular, 
moments of the oscillating bubble dynamics alter the effective pressure and void fraction evolution equation.

Next, in section 3, we develop and verify the conditional moment methods discussed above to close these equations. 
This requires a dynamical/thermodynamical model for each bubble. Even under the assumption of spherical bubbles, the 
most general form of such a model consists of a set of PDEs for the balance of mass, momentum, energy. Under further 
assumptions, however, these can be reduced to a set of ODEs for the bubble radius and radial velocity, with equilibrium 
radius as a parameter [29]. The set of ODEs for each particle determines the derivatives of the internal variables that close 
the moment transport equations [30]. Quadrature-based moment methods then invert the moment set for a quadrature rule 
approximating the quantities required to close the moment transport equations [31,32]. With multiple independent vari-
ables, conditional quadrature moment methods are computationally preferable [33]. This work implements the conditional 
quadrature method of moments (CQMOM [33]) and its hyperbolically constrained version, CHyQMOM [34–36].

Section 4 describes our interface-capturing numerical algorithm for solving the resulting system of equations. We demon-
strate the methodology in section 5 by considering an acoustically excited bubble screen. Lastly, section 6 summarizes our 
results and potential next steps for extending and analyzing the PBE-based method.

2. Model formulation

2.1. Compressible flow equations

A dilute suspension of dynamically evolving bubbles flow in a compressible liquid is considered. For simplicity, we 
assume no slip between the bubbles and the surrounding liquid and that the gas density is much smaller than the liquid 
density. Under these assumptions, the mixture-averaged form of the compressible flow equations is

∂ρ

∂t
+ ∇ · (ρu) =0,

∂ρu

∂t
+ ∇ · (ρuu + p I) =0, (1)

∂ E

∂t
+ ∇ · (E + p)u = 0,

where ρ , u, p, and E are the density, velocity vector, pressure, and total energy. Terms associated with the bubbles modify 
these quantities and transport them in space according to ensemble phase-averaging, discussed next.

2.2. Ensemble phase-averaging

The ensemble-averaged equations follow from Zhang and Prosperetti [8] and Bryngelson et al. [10]. The disperse phase 
has a void fraction α and is assumed to be a dilute (α � 1) population of spherical bubbles. The bubbles are represented 
statistically via random variables R , Ṙ , and Ro corresponding to the instantaneous bubble radius, time derivative, and equi-
librium bubble radius. Section 2.3 presents this bubble dynamics model in detail. The mixture-averaged pressure field is 
computed as

p(x, t) = (1 − α)p� + α

(
R3 pbw

R3
− ρ

R3 Ṙ2

R3

)
, (2)

where pbw are the associated bubble wall pressure and p�(x, t) is the liquid pressure according to the stiffened-gas equation 
of state [37]:
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�� p� + �∞,� = 1

1 − α

(
E − 1

2
ρu2

)
. (3)

The coefficients of (3) represent water, with specific heat ratio γ� = 1 + 1/�� = 7.15 and stiffness �∞,� = 356 MPa [38].
The bubble number density per unit volume n(x, t) is conserved in the absence of coalescence or breakup:

∂n

∂t
+ ∇ · (nu) = 0. (4)

For the spherical bubbles considered here, n is related to the void fraction α via

α(x, t) = 4

3
π R3n(x, t), (5)

and thus the void fraction α(x, t) transports as

∂α

∂t
+ u · ∇α = 3α

R2 Ṙ

R3
, (6)

where the right-hand-side represents the change in void fraction due to bubble growth and collapse.
The over-barred terms appearing in (2), (5), and (6),

R3 Ṙ2, R3, R2 Ṙ, and R3 pbw (7)

denote average quantities of the bubble dispersion. In particular, they are raw moments μlmn with respect to a bubble 
number density function f (R, Ṙ, Ro),

μlmn = Rl Ṙm Rn
o =

ˆ




Rl Ṙm Rn
o f (R, Ṙ, Ro)dRdṘdRo, (8)

which are computed via the methods of section 3.

2.3. Bubble dynamics model

Even for spherical models, dozens of available models employ differing assumptions about the bubble contents and 
simplifications of the physics. These models range from a system of two or more ODEs up to a set of PDEs (in a radial co-
ordinate and time) describing the balance of mass, momentum, and energy of each bubble. PDE-based models are deemed 
intractable (at present), and we focus on ODE-based modeling. We choose one of the simplest possible models to demon-
strate our methodology but note that our framework can be extended to arbitrarily complex ODE-based models.

We assume the spherical bubbles are filled with noncondensible gas and that, insofar as their dynamics are concerned, 
the liquid may be assumed incompressible. We assume that the gas undergoes a polytropic process during compression and 
expansion. Under these assumptions, the bubble radius is governed by a Rayleigh–Plesslet-like equation

R R̈ + 3

2
Ṙ2 + 4

Re

Ṙ

R
=

(
Ro

R

)3γ

− 1

C p
− 2

We Ro

[
Ro

R
−

(
Ro

R

)3γ
]

, (9)

which is dimensionless via the reference bubble size R∗
o and ambient liquid pressure p0, and density ρ0. The polytropic 

index is γ ; in examples below we use γ = 1.4. In (9), C p ≡ p0/p� is the forcing pressure ratio and Reynolds and Weber 
numbers correspond to viscous and surface tension effects as

Re ≡
√

p0

ρ0

R∗
o

ν0
and We ≡ p0 R∗

o

S
, (10)

where S is the air–water surface tension coefficient and ν0 is the liquid kinematic viscosity. Under these conditions, the 
bubble wall pressure of (2) simplifies to pbw = (Ro/R)3γ and the last moment of (7) reduces to R3(Ro/R)3γ .

3. Population balance formulation

The population balance equation (PBE)

∂ f

∂t
+ ∂

∂ R
( f Ṙ) + ∂

∂ Ṙ
( f R̈) = 0 (11)

governs the conditional PDF f (R, Ṙ|Ro) in the absence of bubble coalescence or breakup, though this approach can naturally 
accommodate these effects if required. Fig. 1 summarizes the PBE–quadrature approach.
3
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Fig. 1. Illustration of the quadrature-based moment method for a fully coupled bubbly flow.

3.1. Method of moments

Following the usual procedure, a finite set of raw moments �μ represent f per (8) [14]. The specific moments that make 
up �μ depend on the inversion algorithm and are defined in the appendices A and B. These moments transport on the grid 
and evolve according to the bubble dynamics of section 2.3 as

∂n �μ
∂t

+ ∇ · (n �μu) = n �̇μ = n�g (12)

where

glmn = lμl−1,m+1,n + m

˚




R̈ Rl Ṙm−1 Rn
o f ( �μ)dRdṘdRo (13)

and 
 = 
R × 
Ṙ × 
Ro = (0, ∞) × (−∞, ∞) × (0, ∞). The integrand of (13) is closed via the bubble dynamics model (9)
for R̈ , and the integral is approximated via quadrature, which is discussed next.

3.2. Conditional quadrature moment inversion

Since Ro is not a dynamic variable, the number density function is split as

f (R, Ṙ, Ro) = f (R, Ṙ|Ro) f (Ro). (14)

The raw moments (8) are then

μlmn ≡
ˆ


Ro

f (Ro)Rm
o μlm(Ro)dRo (15)

≈
NRo∑
i=1

wi R̂n
o,i μlm(R̂o,i), (16)

with NRo time-independent weights wi and nodes R̂o,i . Simpson’s rule computes these nodes and weights and the accuracy 
in the approximation of (16) depends on NRo . Other numerical integration methods are suitable and will be discussed in 
section 5.3. The Ro-conditioned moments are
4
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μlm(R̂o,i) ≡
¨


R,Ṙ

f (R, Ṙ|R̂o,i)Rl Ṙm dRdṘ (17)

≈
NR∑
j=1

NṘ∑
k=1

[
ŵ j,k R̂l

j
̂̇Rm

k

]
R̂o,i

. (18)

The moment indices comprising the moment set of (18) are determined by the conditional quadrature moment method used 
to invert those moments for a set of quadrature points and weights (and the number of points desired) [33,35]. In particular, 
μlm(R̂o,i) is traded for quadrature points {R̂ j, ̂Ṙk}(R̂o,i) and weights ŵ j,k(R̂o,i) for each i = 1, . . . , NRo (with j = 1, . . . , NR ; 
k = 1, . . . , NṘ ). The total moments (16) are then approximated by substituting (18) into (16) as

μlmn =
NRo∑
i=1

wi R̂n
o,i

NR∑
j=1

NṘ∑
k=1

[
ŵ j,k R̂l

j
̂̇Rm

k

]
R̂o,i

. (19)

The CHyQMOM and CQMOM algorithms are described in appendices A and B. Their implementation is verified by ensuring 
that the error in closing a linear set of moment transport equations is comparable to a finite-precision round-off [39].

3.3. Model performance

We consider the ability of the QBMMs to represent the statistics of the bubble dynamics. For this example, we take 
a monodisperse population with the same equilibrium radius Ro = 1 (and thus NRo = 1). R and Ṙ are initialized with 
independent log-normal and normal distributions with variances σ 2

R and σ 2
Ṙ

, respectively. The bubbles are forced by a step-

change in pressure at t = 0+ from equilibrium to a value C p (which is varied). This represents a stringent test of model 
fidelity as high values of C p will induce strongly nonlinear bubble dynamics.

Fig. 2 shows the evolution of the carried moment set for C p = 0.3. To assess the accuracy, the CHyQMOM results are 
compared against Monte-Carlo solutions that used 104 samples to ensure that the sampling error was at least 10-times 
smaller than the QBMM model-form error. Thus the Monte-Carlo solutions can be regarded as exact solutions for these 
comparisons. The radial moments μ10 and μ20 show how the bubbles oscillate in response to the change in external 
pressure, eventually reaching a statistical equilibrium [40]. These oscillations are damped rapidly for smaller bubbles due 
to stronger viscous effects (smaller Re). Thus, larger bubbles entail larger model-form errors as they build over time. This 
is most prominent for the Ṙ moments, such as μ02, and smaller bubbles ((b) R∗

o = 10 μm) as the velocity statistics change 
more quickly than the radial ones.

A QBMM model-form relative L2 error is

ε ≡ 1

Nt

√√√√ Nt∑
i=1

[
μ(QBMM)(ti) − μ(MC)(ti)

μ(MC)(ti)

]2

, (20)

where Monte-Carlo (MC) simulations serve as surrogate truth data and ti are Nt = 103 uniformly spaced times in the time 
interval t ∈ [0, T ]. Fig. 3 shows ε for select first- and second-order moments μ. We see that ε is smaller for CHyQMOM and 
CQMOM than Gaussian closure, though the difference is modest and more strongly associated with C p . The larger errors for 
smaller C p are associated with stronger bubble dynamics and the formation of non-Gaussian statistics, like skewness and 
kurtosis, that these closures do not represent [41]. One can represent higher-order statistics by carrying higher-order mo-
ments and thus inverting for a higher-order quadrature rule. However, this is computationally cumbersome and numerically 
unstable in the cases tested here.

Model accuracy was similar for all of the closure methods, but the computational time to solution is not. Fig. 4 shows the 
total relative simulation time for the cases of Fig. 3 under the same adaptive time-step tolerance. CHyQMOM simulations 
are about 10-times cheaper than those using CQMOM or Gaussian closures, even though the accuracy is the same. This 
is attributed to larger time step sizes (given the same error constraint) and a smaller carried moment set than CQMOM. 
Due to its low cost for the same accuracy, the fully-coupled simulation algorithm employs CHyQMOM and is discussed 
next.

4. Interface-capturing flow solution algorithm

The QBMM approach of the previous section is solved using interface-capturing numerics. MFC, an open-source flow 
solver, is the basis for the implementation [42]. A brief description of the algorithm follows.

The governing equations (1), (6), and (12) combine as

∂�qc

∂t
+ ∇ · �F = �r (21)
5
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Fig. 2. Example first- and second-order moments μ as labeled for bubbles with Reynolds and Weber numbers corresponding to (a) R∗
o = 1 μm and (b) 

R∗
o = 10 μm. The dimensionless initial shape parameters are σR = σṘ = 0.2. The CHyQMOM implementation uses two quadrature nodes in each internal 

coordinate direction (2 × 2), and “Gaussian” corresponds to Gaussian closure [10]. Monte Carlo serves as an exact solution. The final time is T = 13.9 and 
represents 10 natural periods of the largest bubble.

Fig. 3. Relative model-form errors for varying pressure ratio C p and closure methods as labeled. All cases have Re = 100 and We = 13.9.

where �qc ≡ {ρ, ρu, E, α, n �μ} are the conservative variables, �F are the advective fluxes, and �r are diffusive source terms. 
Finite volumes with uniform size � discretize the domain.

4.1. Flow state initialization

We initialize the flow as follows. The number density function f (R, Ṙ, Ro) is independently distributed with log-normal, 
normal, and log-normal shapes in the R , Ṙ , and Ro directions with expected values E[R] = E[Ro] = 1 and E[Ṙ] = 0 and 
shape parameters σ· .
6
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Fig. 4. Total simulation times for the cases of Fig. 3. A single-core of a 2.8 GHz Intel i7-7700HQ performed the computations. Only relative times are 
relevant, so the cheapest simulation normalizes the scale (CHyQMOM, C p = 0.8).

The NDF f initializes the moment set �μ via integration. The primitive variables �qp ≡ {ρ, u, p, α, �μ} are initialized as 
appropriate. The bubble number density n follows from (5), �qp , and μ300. Lastly, the known primitive variables are used to 
compute the conservative ones as �qc ≡ {ρ, ρu, E, α, n �μ}.

Algorithm 1 Flow initialization procedure.
1: f (R, ̇R, Ro) ← Presumed form, uncorrelated, {μR , μṘ , μRo } and {σR , σṘ , σRo }
2: �μ ← f and (8)
3: �qp ≡ {ρ, u, p, α, �μ} ← Patches
4: n ← α, μ300 and (5)
5: �qc ← n, �qp

4.2. Flux divergence computation

A fifth-order-accurate WENO [43] scheme reconstructs the primitive variables �qp and the HLLC approximate Riemann 
solver [44] computes the fluxes. Algorithm 2 describes this process in detail. High-order WENO reconstructions do not 
guarantee that the reconstructed moments are realizable, though the moment sets remained invertible in the subsequent 
simulations.

Algorithm 2 Algorithm for computing the flux divergence.
1: �qp ← �qc and (3)
2: q̂p ← WENO(�qp)

3: {R̂, ̂̇R, ̂w} jk ← QBMM(μ̂)

4: ĝ, {R3 Ṙ2, R3, R2 Ṙ, R3 pbw } ← {R̂o, w}i , {R̂, ̂̇R, ̂w} jk,i

5: �F ← HLLC(̂qp, ̂g, {·})
6: ∇ · �F ← �F

4.3. Time stepping

The conservative variables are integrated in time using third-order-accurate SSP–RK3 time integration [45]. Once the 
spatial derivatives have been approximated, (21) becomes a semi-discrete system of ordinary differential equations in time. 
We treat the temporal derivative using a Runge–Kutta time-marching scheme for the state variables. To achieve high-order 
accuracy and avoid spurious oscillations, we use the third-order-accurate total variation diminishing scheme of Gottlieb and 
Shu [46]:

�q (1)
c = �q ñ

c + �t L(�q ñ
c ),

�q (2)
c = 3

4
�q ñ

c + 1

4
�q(1)

c + 1

4
�t L(�q (1)

c ), (22)

�q ñ+1
c = 1

3
�q ñ

c + 2

3
�q (2)

c + 2

3
�t L(�q (2)

c ),
7
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Fig. 5. Schematic of the acoustically excited bubble screen test problem. The screen is centered at x = 0.

Fig. 6. Bubble-screen-centered pressure for varying Ro log-normal distributions with shape parameter σRo and fixed σR = σṘ = 0.2. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

where superscripts (1) and (2) indicate intermediate time-step stages, L represents the portion of (21) that does not include 
the time derivative, and ñ is the time-step index.

5. Application to polydisperse bubble screens

5.1. Problem setup

We assess the statistics of bubble dynamics in an idealized model problem consisting of an acoustically excited di-
lute bubble screen (see Fig. 5). The bubble screen parameterization matches that of Bryngelson et al. [10], with a length 
of Ls = 5 mm, initial void fraction αo = 10−4, median bubble equilibrium size R∗

o = 10 μm and log-normal variance σRo . 
The domain is Ld = 5Ls long, and its boundaries are non-reflective via characteristic-based boundary conditions [47]. 
The one-way (positive x̂-direction) sound wave p∞(t) is generated via source terms in the governing equations (21) ac-
cording to Bryngelson et al. [10]. Its form is a single period of a sinusoid with peak amplitude 0.3p0 and frequency 
300 kHz.

5.2. Bubble screen behavior

We start by considering a screen with fixed dynamic coordinate distributions σR = σṘ , but varying distributions of equi-
librium sizes σRo . Polydispersity in Ro is integrated via Simpson’s rule 61 quadrature points for all cases. Fig. 6 shows 
the bubble screen pressure for these cases as they evolve in time. For larger σRo (or broader distributions or bubble 
equilibrium sizes), the pressure is less oscillatory in time. A similar observation was made by Bryngelson et al. [10] for 
cases with no R or Ṙ distributions. In the case of Fig. 6, we instead observe high-frequency oscillations in addition to the 
long-wavelength behaviors associated with the impinging pressure wave p∞ . The origin of these oscillations is discussed 
next.

Fig. 7 shows the dynamics associated with a bubble screen in varying degrees of statistical disequilibrium, represented 
via different σR and σṘ . Fig. 7 (a) fixes σṘ and varies σR . We observe the shorter-wavelength oscillatory behavior, observed 
in Fig. 6, becoming more prominent for larger σR . These wavelengths are commensurate with the mean bubble natural 
frequencies, which superimpose the longer wavelength acoustics associated with the impinging p∞ wave. Fig. 7 (b) shows 
a smoother pressure profile for larger σṘ . Phase-cancellation between the larger waves associated with broader σṘ distri-
butions and those of the σR distributions may account for this behavior. Notably, these behaviors are qualitatively similar 
to those associated with varying Ro distribution widths. Thus, parameterizing an Ro distribution based on single-probe 
pressure measurements is insufficient.
8
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Fig. 7. Bubble-screen-centered pressure before, during, and after excitement due to an acoustic wave. The bubbles are polydisperse with log-normal Ro

distribution (σRo = 0.2) and Re = 103. Variations in (a) σR and (b) σṘ are shown about a σR = σṘ = 0.2 representative state.

Fig. 8. Relative closure error εc (defined in (23)) for increasing number of Ro -direction quadrature points NRo . Variations in (a) σR , (b) σṘ , and (c) σRo are 
shown. Unless labeled otherwise, cases have the baseline σR = σṘ = σRo = 0.2.

5.3. Closure errors

We quantify the moment closure error, εc , via the mismatch in bubble screen pressure p(t, x = 0) due to truncated 
Ro integration. Otherwise, the definition of εc has the same form as ε of (20), though the truth values are changed from 
Monte-Carlo simulations (which are unavailable) to high-resolution NRo = 401 simulations as

εc ≡ 1

Nt

√√√√ Nt∑
i=1

[
p(QBMM)(ti, x = 0) − p(NRo =401)(ti, x = 0)

p(NRo =401)(ti, x = 0)

]2

. (23)

This choice is made for two reasons. First, extending the QBMM method to additional R and Ṙ quadrature points (or 
moments, equivalently) was found numerically unstable for most bubble cavitation problems. One approach to addressing 
this specific problem is introducing a recurrent neural network to correct the quadrature points and weights [48], though 
we do not discuss it further here. Second, we will see that the closure errors are most strongly associated with NRo , and 
thus focus on the influence of this parameter.

Fig. 8 shows the NRo closure errors associated with variations in all three PDF directions (panels a–c). For varying σR

(a) and σRo (c) we see that increasing variance σ· results in larger closure errors εc . This appears to be associated with 
the larger pressure oscillations p(x = 0, t) observed for such cases. For Fig. 8 (b), we see the reverse trend, with larger 
σṘ corresponding to smaller closure errors, though this effect is small. Indeed, this effect matches that of the R- and Ro-
direction effects, where larger σṘ results in smoother pressure histories. We also investigated the effect of Re, which results 
in smoother pressure profiles for smaller Re, and found the same trend.

Compelled by the closure error associated with NRo dominating the total simulation error, we also implemented 
Gaussian–Hermite and Gauss–Legendre quadrature methods in the Ro-direction in an attempt to reduce the error. Fig. 9
shows these closures errors εc for increasing NRo . We see that these alternative quadrature rules do not significantly 
change the closure error, despite being optimal for a given NRo . This is because the integrand becomes highly os-
cillatory without viscous damping, as bubbles of different equilibrium radii Ro become out of phase [40]. Long-time 
simulations without significant viscous effects, broadly polydisperse bubble populations (large σRo ) will require treat-
ment of these developing oscillations. For example, a time-stationary analysis could be used to approximate the Ro-
moments, so long as the bubble dynamics are fast compared to the fluid flow [40]. We will investigate this in future 
work.
9
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Fig. 9. Closure error associated with σR = σṘ = σRo = 0.2 for different Ro -direction quadrature rules as labeled.

6. Conclusion

A fully coupled numerical method for simulating sub-grid cavitating bubble dispersions was presented. The approach 
represents and evolves the statistics of the bubble dynamic variables. This work built upon the well-established framework 
of quadrature-based moment methods: a governing set of moment transport equations were derived, effectively represent-
ing the underlying statistics. Those moments were inverted for a quadrature rule to close the fully coupled disperse flow 
equations.

Our results showed that only four quadrature points, two in each of the bubble dynamics coordinates, can be sufficient 
to represent the statistics of the monodisperse bubbles. This model was particularly accurate for weak pressure forcing, and 
thus nearly linear bubble dynamics. It was also accurate for highly damped dynamics, characteristic of low Reynolds num-
bers, as non-Gaussian statistics cannot present themselves. This result contrasts against a previous approach that assumed 
Gaussian statistics, which had demonstrably worse performance and higher computational costs [41]. The method would 
require more quadrature points for cases with more complicated dynamics, such as larger forcing.

An acoustically excited dilute bubble screen problem demonstrated the model’s behavior in a coupled flow. Modeling 
the statistics in the bubble dynamics variables resulted in qualitatively different behavior in the screen region. For example, 
increasing the distribution breadth in the bubble radius coordinate resulted in short-wavelength pressure oscillations of 
increasing magnitude superimposing the background response to the impinging acoustic wave. Thus, modeling the R–Ṙ
distributions is potentially critical to modeling cavitating bubble clouds and certainly important if bubbles are ever in such 
statistical disequilibrium.

Finally, we found that for broadly polydisperse populations (large σRo ), the closure error in the equilibrium radius 
coordinate Ro was most important. Our results also show that phase-cancellation can modestly reduce some compu-
tational costs associated with resolving the Ro coordinate. Still, Ro-direction quadrature dominates the solution cost of 
these polydisperse bubble populations, even in the face of more sophisticated quadrature rules like Gauss–Hermite (cor-
responding to the underlying log-normal distribution). However, one can apply existing approaches if time-separation is 
achieved, or a novel method based on, e.g., neural networks, can also treat this. We will investigate these in-depth in future 
work.
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Appendix A. CHyQMOM moment inversion

This appendix describes the 2D, 2 × 2 (4) node CHyQMOM algorithm of [34]. We note that Patel et al. [35] provides 
the 3D version of this algorithm, though it is not necessary for our bubble dynamics problem. Algorithm 3 is the full 2D 
CHyQMOM algorithm, which references the 1D 2-node HyQMOM Algorithm 4. The optimal moment set for this case is
10
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�μ = {μ00,μ10,μ01,μ20,μ02,μ11} , (24)

which is also the input to Algorithm 3.

Algorithm 3 CHyQMOM 2 × 2. μ are the input moments, D are normalized moments, C are central moments, and w , x and 
y are the weights and node locations in the first and second coordinate directions (corresponding to R and Ṙ in the main 
text).

1: procedure CHyQMOM4(μ)
2: Dij = μi j/μ00

3: C20 ← D20 − D2
10

4: C02 ← D02 − D2
01

5: C11 ← D11 − D10 D01

6: ρ, x′ = HyQMOM2({1, 0, C20})
7: y′ = x′C11/C20

8: μ2
avg = C02 − ∑

j ρ j y′
j
2

9: ρ̃, ̃x′ = HyQMOM2({1, 0, μ2
avg})

10: for i, j ∈ [1, 2] do
11: wij ← μ00ρi ρ̃ j

12: xij ← D10 + x′
j

13: yij ← D01 + y′
j + x̃′

i
14: end for
15: return w, x, y
16: end procedure

Algorithm 4 The two-node 1D HyQMOM algorithm. Nomenclature follows Algorithm 3, with w and x serving as dummy 
weights and node locations.
1: procedure HyQMOM2(μ)
2: C2 ← (μ0μ2 − μ2

1)/μ2
0

3: w1 = w2 ← μ0/2
4: x1 ← μ1/μ0 + √

C2

5: x2 ← μ1/μ0 − √
C2

6: return w, x
7: end procedure

Appendix B. CQMOM moment inversion

This appendix has the same form as appendix A, though it instead describes the 2D CQMOM algorithm of [33]. Algo-
rithm 5 is the full 2D CQMOM algorithm, referencing Wheeler’s method for computing optimal 1D quadrature nodes and 
weights (see Algorithm 6) [32,49]. The optimal moment set for this case is

�μ = {μ00,μ10,μ01,μ20,μ02,μ11,μ30,μ03,μ12,μ13} , (25)

which is also the input to Algorithm 5.

Algorithm 5 2D CQMOM algorithm with dummy coordinate direction y conditioned on x. V is a Vandermonde matrix and 
W is a diagonal weight matrix.

1: procedure CQMOM(μ)
2: w(x), x ← Wheeler({μ00, μ10, . . . , μ2Nx−1,0})
3: for i, j ∈ [1, . . . , Nx] do
4: V ij = xi−1

j

5: W ii = w(x)
i

6: end for
7: for i ∈ [0, . . . , 2N y − 1] do
8: x′

i ← V W x′
i = μ0:Nx−1,i

9: w(y)

i j , yij ← Wheeler(x′
i)

10: end for
11: wij = w(x)

i w(y)

i j
12: return w, x, y
13: end procedure
11
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Algorithm 6 Wheeler’s algorithm for optimal quadrature points x and weights w given a moment set μ [32,49]. J is a 
Jacobi matrix, and EVD refers to the eigenvalue decomposition.

1: procedure Wheeler(μ)
2: for i ∈ [1, . . . , 2N] do
3: σ1,i ← μi−1
4: end for
5: a0 ← μ1/μ0

6: b0 ← 0
7: for i ∈ [2, . . . , N] do
8: for j ∈ [i, . . . , 2N − i + 1] do
9: σi, j ← σi−1, j+1 − ai−2σi−1,i−1

10: end for
11: ai−1 ← σi,i+1/σi,i − σi−1,i/σi−1,i−1
12: bi−1 ← σi,i/σi−1,i−1
13: end for
14: for i ∈ [2, . . . , N − 1] do
15: J i,i ← ai−1
16: J i+1,i = J i,i+1 ← √

bi

17: end for
18: Q � Q −1 ← EVD( J )
19: for i ∈ [1, . . . , N] do
20: xi ← �ii

21: wi ← μ0 Q 2
i,1

22: end for
23: return w, x
24: end procedure
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