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ABSTRACT
This paper assesses and reports the experience of ten teams work-
ing to port, validate, and benchmark several High Performance
Computing applications on a novel GPU-accelerated Arm testbed
system. The testbed consists of eight NVIDIA Arm HPC Developer
Kit systems, each one equipped with a server-class Arm CPU from
Ampere Computing and two data center GPUs from NVIDIA Corp.
The systems are connected together using InfiniBand interconnect.
The selected applications and mini-apps are written using several
programming languages and use multiple accelerator-based pro-
grammingmodels for GPUs such as CUDA, OpenACC, andOpenMP
offloading. Working on application porting requires a robust and
easy-to-access programming environment, including a variety of
compilers and optimized scientific libraries. The goal of this work
is to evaluate platform readiness and assess the effort required
from developers to deploy well-established scientific workloads on
current and future generation Arm-based GPU-accelerated HPC
systems. The reported case studies demonstrate that the current
level of maturity and diversity of software and tools is already
adequate for large-scale production deployments.
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1 INTRODUCTION
Deploying new supercomputers requires continuous evaluation of
novel platforms and understanding of the trade-offs in porting ex-
isting applications to different architectures. With many of the HPC
technology players building general-purpose or specialized acceler-
ators, it is increasingly important to have a concrete understanding
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of the level of human-time investment required to make applica-
tions production-ready on any of these accelerated platforms, as
well as the expected performance benefits to be gained with such
effort.

Since the introduction of Arm Neoverse IP by Arm Ltd, we have
witnessed a steady adoption and an increasing number of CPU prod-
ucts based on the Arm Instruction Set Architecture (ISA). Noticeable
deployments include Sandia Astra (first petascale-class system de-
ployed in 2018) and the RIKEN R-CCS Fugaku (first exascale-class
system deployed in 2020). Fugaku, based on Fujitsu’s A64FX Arm-
based CPU1 was also the first systems with a SIMD-capable CPU
via the Arm Scalable Vector Extension (SVE) [30].

Looking at cloud deployments, the Graviton processor2 provides
a significant portion of computational resources provisioned by
Amazon Web Services. Now in its 3rd generation, the Graviton
CPU is based on Arm Neoverse V1 core IP and supports Arm SVE
SIMD instructions. AWS is not the only hyperscaler interested
in deploying Arm CPUs; others, like Microsoft and Oracle, have
started to offer Arm-based instances primarily based on Ampere
Computing Altra and Altra Max CPUs.

In the very early days of the Arm journey into HPC, Arm sys-
tems were often custom-built and of limited scale (tens of nodes).
The Mont–Blanc [27] project and the UK Catalyst initiative have
paved the way to more robust and accessible systems, no longer
experimental testbeds. In recent years hybrid CPU–GPU systems
are becoming the dominant choice for large-scale leadership-class
facilities (above ∼100 PFlops) due to their performance and power
efficiency. As we advance, platforms combining a modern Arm-
based CPU with an energy-efficient high-performance GPU appear
to be a natural choice to tackle future computing and computational
challenges.

In collaboration with NVIDIA, Oak Ridge National Laboratory
pioneered the combined use of Arm CPU and NVIDIA GPU in 2019.
The NVIDIA Arm HPC Developer Kit3 represents a modern Arm-
based GPU-accelerated platform. The upcoming NVIDIA Grace
Hopper Superchip4 marks a step further in the platform design
where CPU and GPU are tightly integrated into a “superchip” with
enhanced I/O capabilities.

In this fast-paced evolving landscape of accelerators and hetero-
geneous systems, assessing as early as possible the viability of any
technology and its impact on software maturity, code portability,
and developer productivity remains a must. This paper presents
an application-focused assessment of a multi-node NVIDIA Arm
HPC Developer Kit test bed used primarily to validate software and
ecosystem readiness. These systems are part of an experimental
HPC cluster facility called Wombat, which is discussed in Section 2.

This study makes the following contributions: 1) The first thor-
ough collaborative investigation of a modern GPU-accelerated Arm-
based system using production applications; 2) Readiness analysis
of those software tools required to compile the selected applications
with and without GPU support; 3) preliminary performance results

1https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
2https://aws.amazon.com/ec2/graviton/
3https://developer.nvidia.com/arm-hpc-devkit
4https://www.nvidia.com/en-us/data-center/grace-hopper-superchip/
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compared to ORNL’s Summit system; and 4) overall general as-
sessment of the software ecosystem readiness for GPU-accelerated
Arm-based platforms.

A handful of production-ready HPC applications has been se-
lected for this evaluation. Table 1 reports a simplified classification
of the selected applications. Since the primary goal is to assess
porting feasibility and obtain an initial performance baseline, we
decided to use the selected applications as-is without investing any
extra tuning efforts apart from adapting compiler flags or linking
vendor-provided optimized libraries. Due to the breadth of the study
and space constraints, some details are not included in this work
but are available in [11], and references to pertinent sections are
used where appropriate.

2 WOMBAT TESTBED
2.1 Background
Wombat is a small HPC cluster which has been equipped since
2018 with various Arm-based platforms from different vendors.
The cluster is deployed and managed by The Oak Ridge Leadership
Computing Facility (OLCF) and is freely accessible to users and
researchers. The purpose of the cluster is to serve as a testbed for
Arm-based AArch64 processors and related technologies within
a close-to-production environment. Users who request access can
use the system to port and validate their applications. Platform
engineers at OLCF have been using Wombat to experiment and
compare end-to-end integration and configuration aspects of Arm-
based HPC systems.

2.2 Hardware
Currently the Wombat cluster consists of three sets of compute
nodes:

(1) HPE Apollo 70 (4 nodes), each equipped with dual-socket
Marvell ThunderX2 CN9980 processors and two NVIDIA
V100 GPUs, connected via PCIe Gen 3.

(2) HPE Apollo 80 (16 nodes), each equipped with a single-socket
Fujitsu A64FX processor.

(3) NVIDIA Arm HPC Developer Kit (8 nodes), each equipped
with a single-socket Ampere Computing Altra Q80–30 CPU
(based on Arm Neoverse N1 IP) and two NVIDIA A100 GPUs
- connected via PCIe Gen 4.

All nodes share a CPU-only login node based on dual-socketMarvell
ThunderX2. All nodes are connected via either InfiniBand EDR or
HDR to the same Infiniband network.

2.3 Programming Environment
The programming environment and system software has beenmain-
tained as-is for the entire duration of the evaluation (April and May
2022). We consciously decide not to constantly vary the environ-
ment and create a fixed baseline. Wombat nodes boot their OS from
the network, and all nodes are provisioned with the same pre-built
compute image based on CentOS 8.1 with kernel 4.18. Job submis-
sion and execution are orchestrated using SLURM. The compilers
and interpreters available include NVIDIA HPC SDK (NVHPC)
22.1, Arm Compiler for HPC 22, CUDA 11.5.1, GNU 11.1, LLVM
15.0.0 with OpenMP offload enabled, Python 3.9.0, and Julia 1.7.0.

Networking support is provided by OFED 5.4 and UCX 1.11.1 and
although most experiments are single node, OpenMPI 4.1.2a1 is
installed for multi-node jobs. NSight Compute SDK, Allinea Forge,
and Score-P are available for profiling purposes .

We use Spack [15] for additional third party scientific libraries
and tools, including for example HDF5, OpenBLAS, and Score-P.
We did not manually modify any compiler optimization flags used
by Spack, aiming for an unfiltered "out-of-the-box" experience.
Packages that did not have working Spack recipes were installed
individually.

Each application team was responsible for building their re-
spective application, installing extra dependencies, and linking the
appropriate libraries.

3 EVALUATION METHODOLOGY
By definition, any testbed may lack some features found in final
production systems. This fact should be taken into consideration
when analyzing the performance results obtained.

For the purpose of this evaluation themost common performance
score used in HPC, the Time-to-Solution, is not the primary Figure
of Merit. Rather then perform a deep dive into the performance
characteristics of each application, we perform a breadth-first study
to assess platform’s software ecosystem readiness. This approach
sets the stage for further improvements on system setup and tuning,
aiming to increase robustness. Moreover enhancements in system
architecture can be identified.

Following a call of contributions, 13 application teams agreed
to participate in the evaluation process and 10 teams carried out
the evaluation work until completion. Table 1 summarizes the final
list of applications and their key characteristics. The list covers
eight different scientific domains and includes codes written in
Fortran, C, and C++. The parallel programming models used were
MPI, OpenMP/OpenACC, Kokkos, Alpaka, and CUDA. We did not
include changes to the application codes in the porting activities.

App. Name Science Domain(s) Language Parallel Programming
Model(s)

ExaStar Stellar Astrophysics Fortran OpenACC, OpenMP
offload

GPU-I-TASSER Bioinformatics C OpenACC
LAMMPS Molecular Dynamics C++ MPI, OpenMP, KOKKOS
MFC Fluid Dynamics Fortran MPI, OpenACC
MILC QCD C/C++ CUDA
NAMD/VMD Molecular Dynamics C++ Charm++, CUDA
PIConGPU Plasma Physics C++ Alpaka, CUDA
QMCPACK Chemistry C++ OpenMP offload, CUDA
SPECHPC 2021 Variety of applications C/C++, For-

tran
OpenMP offload, OpenMP

SPH-EXA2 Hydrodynamics C++ MPI, OpenMP, CUDA, HIP

Table 1: Applications evaluated on the Wombat testbed.

The evaluation process primarily focuses on application port-
ing and testing, with less emphasis on absolute performance in
light of the experimental nature of the testbed. Application teams
were responsible for the basic configuration and build management
for their respective application with support for installing needed
system-wide packages using Spack as needed. The evaluation took
place over two months spanning April and May 2022. Application
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teams were free to choose the particular use cases to be evaluated
for usability and performance on the testbed and to compare such
performance with other platforms where the respective codes are
regularly deployed.

3.1 Porting for functionality and correctness
The porting process for the applications used in this study was
fairly straightforward. While applications use different program-
ming languages, offloading approaches, and third party libraries,
such factors did not pose a challenge for initial application port-
ing and functionality. The improved maturity of the Arm software
ecosystem, the general availability of the NVHPC toolkit for Arm,
and improved support in the Spack packagemanagement system for
Arm were all factors that contributed to a seamless porting process.
Minor modifications to respective application build systems were
however required as is typical whenmoving to a newHPC platform,
though no major obstacles were encountered in this phase. In the
following section, we do not report porting experience for each
application, unless noteworthy issues were encountered regarding
the usability of existing toolchains on the Wombat testbed.

4 APPLICATIONS
4.1 ExaStar
4.1.1 Background. The toolkit for high-order neutrino-radiation
hydrodynamics (thornado) [21] is a Fortran code (F2008) written
as a stand-alone module that can be incorporated into ExaStar
simulations [16] using the Flash-X multi-physics code. Thornado is
used to compute the neutrino radiation field with a two-moment
model for spectral neutrino transport that evolves moments of the
neutrino phase-space distribution function representing spectral
energy and momentum densities. In this study, we use two stand-
alone thornado benchmarks as a tool for evaluating node-level
performance: Streaming Sine Wave and Relaxation.

4.1.2 Performance and comparisons. As a baseline, we ran both
benchmarks on a single node of the Summit computer at the
Oak Ridge Leadership Computing Facility (OLCF). Each Summit
node has 2 IBM POWER9 CPUs and 6 NVIDIA Volta GPUs, but
for comparisons to the NVIDIA Arm HPC Dev Kit, we limit
comparisons to a single CPU or single GPU. For the CPU runs with
POWER9, we also test different configurations of Simultaneous
Multithreading (SMT). The total number of OpenMP threads is
set by the product of the number of cores and hardware threads
available. To demonstrate the parallel efficiency of our OpenMP
implementation, we also report serial execution times for each
CPU. On both systems, we use standard -O2 optimizations and -tp
for the target CPU. For benchmarks that report using the GPU, all
computation is done on the GPU; the CPU thread is only used to
launch kernels and manage data transfer. In both cases, the salient
Figure of merit is wall-time (lower is better).

Streaming Sine Wave. We report the total wall-time to evolve
ten timesteps of the Streaming Sine Wave benchmark for each
hardware configuration in Table 2.

The serial CPU comparison shows a speedup factor of 1.3x (2.5x)
for the Ampere Altra relative to the POWER9 (ThunderX2). This

Time
CPU GPU Cores:SMT:Thrds. Prog. Model (sec)
Power9 None 1:1:1 OpenMP 129
ThunderX2 None 1:1:1 OpenMP 244
Ampere Altra None 1:1:1 OpenMP 99.0
Power9 None 21:1:21 OpenMP 14.8
Power9 None 21:2:42 OpenMP 17.0
Power9 None 21:4:84 OpenMP 21.3
ThunderX2 None 28:1:28 OpenMP 18.6
ThunderX2 None 28:2:56 OpenMP 17.8
ThunderX2 None 28:4:112 OpenMP 18.5
Ampere Altra None 80:1:80 OpenMP 6.72
Power9 V100 1:1:1 OpenACC 3.75
ThunderX2 V100 1:1:1 OpenACC 5.54
Ampere Altra A100 1:1:1 OpenACC 2.96

Table 2: Comparison of thornado wall-clock times on each platform for
the Streaming Sine Wave test problem. All runs used the nvfortran compiler.
Green rows indicate NVIDIA ARM HPC Development Kit hardware.

single-core performance gain is also realized for the multi-core
comparison, where we find speedup by a factor of 2.2x (2.8x)
for Altra relative to POWER9 (ThunderX2). However, we find
poor strong scaling of Altra (18% parallel efficiency with 80
threads) relative to POWER9 (42% efficiency with 21 threads).
We speculate that this is rooted in the introduction of OpenMP
overhead stemming from many small loop nests used in the
streaming advection operation. This is further supported by the
drop in performance on POWER9 for increasing SMT levels. The
Altra+A100 results also exhibit a speedup factor of 1.3x (1.9x)
relative to the POWER9+V100 (ThunderX2+V100) and a factor
of 2.3x relative to the Altra CPU-core multi-core result. Further
analysis of the contributions of different components to the overall
performance on different platforms can be found in [11], Section 4.1.

Relaxation.We report the total wall-time to evolve 10 timesteps
of the Relaxation benchmark for each hardware configuration in
Table 3. We measure the improved serial performance of 1.2x (2.2x)
for Altra relative to POWER9 (ThunderX2), though it is a smaller
improvement than the previous benchmark. The Relaxation bench-
mark exhibits similar strong scaling efficiency for multi-core perfor-
mance of Altra, and we find a speedup factor of 1.6x (3.2x) relative
to POWER9 (ThunderX2). The GPU results are also favorable for
the Altra+A100 configuration; we find a 1.7x (1.9x) speedup relative
to POWER9+V100 (ThunderX2+V100) and a 21.5x speedup rela-
tive to the Altra CPU-only multi-core case. Further analysis of the
performance across the different platforms can be found in [11].

4.2 GPU-I-TASSER
4.2.1 Background. GPU-I-TASSER is a GPU-capable bioinformat-
ics method for protein structure and function prediction. It is de-
veloped from the Iterative Threading ASSembly Refinement (I-
TASSER) method [39]. The I-TASSER suite predicts protein struc-
tures through four main steps. These include threading template
identification, iterative structure assembly simulation, model se-
lection, and refinement, and the final step being structure-based
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Time
CPU GPU Cores:SMT:Thrds. Prog. Model (sec)
Power9 None 1:1:1 OpenMP 199
ThunderX2 None 1:1:1 OpenMP 374
Ampere Altra None 1:1:1 OpenMP 167
Power9 None 21:1:21 OpenMP 24.6
Power9 None 21:2:42 OpenMP 25.0
Power9 None 21:4:84 OpenMP 26.3
ThunderX2 None 28:1:28 OpenMP 48.9
ThunderX2 None 28:2:56 OpenMP 46.4
ThunderX2 None 28:4:112 OpenMP 44.3
Ampere Altra None 80:1:80 OpenMP 15.3
Power9 V100 1:1:1 OpenACC 1.21
ThunderX2 V100 1:1:1 OpenACC 1.32
Ampere Altra A100 1:1:1 OpenACC 0.71

Table 3: Comparison of thornado wall-clock times on each platform for
the Relaxation test problem. All runs used the nvfortran compiler. Green
rows indicate NVIDIA ARM HPC Development Kit hardware.

function annotation. The structure folding and reassembling stage
is conducted by replica-exchange Monte Carlo simulations.

I-TASSER has predicted protein structures over the last decade
with high accuracy. Thus, it has been ranked as the first automated
server for protein structure prediction, according to the critical
assessment of structure prediction (CASP) experiments, CASP7
through CASP13 [22].

Despite the robustness of I-TASSER in predicting protein struc-
tures with high accuracy, it takes considerably longer to predict
some proteins’ structures. GPU-I-TASSER has therefore been de-
veloped to utilize the efficient GPU in predicting the structure
of proteins. GPU-I-TASSER is developed by targeting bottleneck
replica-exchange Monte Carlo regions of the protein structure pre-
diction method and porting those to the device. The ported replica-
exchange Monte Carlo regions utilize the GPU to optimize the
application. The GPU optimization is based on OpenACC paral-
lelization of bottleneck regions with extensive data management.

4.2.2 Performance and comparisons. Performance gains across the
testbed are compared to the performance from running the same
benchmark dataset of proteins on Summit. For details regarding the
hardware and software specs of Summit, please refer to [38] To en-
sure that both systems are on the same level regarding performance
comparison, we used the same GPUs. For the initial comparison,
we assess the average runtime in seconds for both serial and GPU
runs on Wombat using one ThunderX2 processor and one NVIDIA
V100 GPU. We observe an average speedup of 7.68x using V100
GPUs on Wombat.

We further compare the performance across V100 GPUs to A100
GPUs on Wombat. We used one A100 and one V100 GPU in this
case. We record an average of 7.35x speedup on A100 GPUs com-
pared to the 7.68x on V100 GPUs on Wombat. We should note that
the A100 runs were in-comparison to Ampere Computing Altra
processors, whereas the V100 performance was relative to Thun-
derX2 processors. Also, we took the average runtimes against the
number of cycles of simulations within a Monte Carlo run.

Figure 1: Performance of GPU I-TASSER on Wombat and Summit.

Finally, we compare the performance of GPU I-TASSER onWom-
bat to Summit using NVIDIA V100 GPUs. An average speedup of
6.92x is recorded using 1 V100 GPU on Summit. Comparing indi-
vidual runs on Summit to Wombat, we can observe that Summit
performed slightly better than Wombat across GPU and serial runs.
Specifically, average serial and GPU runtimes per cycle of simu-
lations measured in seconds are 1669.57 and 217.52, respectively,
on Wombat, whereas on Summit, those are 1498.70 and 216.64,
respectively.

Figure 1 shows the performance of Wombat’s ThunderX2 and
Ampere Altra processors and NVIDIA A100 and V100 GPUs relative
to the POWER9 processor on Summit. We record a slowdown of an
average of 0.9x comparing ITASSER run on Wombat’s ThunderX2
processor to Summit’s POWER9 processor. For Ampere Altra (CPU-
only), NVIDIA V100, and A100, we record positive speedups of 1.8x,
6.9x, and 13.3x, respectively.

4.3 LAMMPS and Kokkos
4.3.1 Background. The Kokkos C++ Programming Model is one of
the leadingways of writing performance portable single source code
for current and future HPC platforms [37]. It is widely used in the
HPC community, particularly within the US National Laboratories
and their partners. The programming model is implemented as
a C++ abstraction layer on top of vendor-specific programming
models such as CUDA, HIP, OpenMP, and SYCL. It is funded by
the DOE Exascale Computing Project and developed by a multi-
institutional team spanning several DOE laboratories.

LAMMPS is a widely used molecular dynamics application that
one can use to simulate a wide range of materials, including con-
densed matter, gases, and granular materials [36]. It can leverage a
wide array of architectures via Kokkos.

4.3.2 Performance and comparisons. We decided on four bench-
marks that stress host-device interactions to investigate the impact
of using Arm CPU as host. Generally, we do not expect code mainly
bound by GPU execution time to show different behavior based on
the host CPU.
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As comparison systems, we used one with an NVIDIA A100 GPU,
an AMD EPYC (Milan) x86 CPU, and a system with NVIDIA V100
GPUs and an IBM POWER9 CPU. The latter system connects the
GPU and CPU via NVLink. The measured performance numbers
are given in Table 4.

Kokkos Kernel Latency. The Kokkos Programming model
provides many different parallel operations, such as parallel_for
and parallel_reduce, which come with different latencies.

Overall, the Wombat system has latencies that fall between the
x86 and the IBM POWER-based systems. While the pure launch
latencies are comparable to x86, subsequent fences take longer.
That, in turn, is reflected in higher latencies for reductions.

System Atomic Throughput. To measure the throughput of
system atomics, we ran a benchmark distributed as part of the
Kokkos repository, which emulates three common atomic access
patterns. However, we modified the benchmark to perform the
updates into host pinned memory, emulating scenarios where the
host and the GPU work on some data collaboratively. The Wombat
system performs similarly to the x86 system. The IBM system with
NVLink interconnect is significantly faster.

Host-Device Data Transfer. We investigate three common
host-device data transfer scenarios: transferring data to the device
from regular and pinned host allocations and relying on page faults
with managed memory.

For regular allocations, all systems perform similarly. With host
pinned allocations, Wombat performs 3.5x worse than the IBM
system with NVLink, and 25% worse than the x86 system. For
managed allocations, the transfer rates depend significantly on the
copy direction. Wombat beats the other systems for host-to-device
transfers while being the slowest for device-to-host transfers.

LAMMPS. LAMMPS demonstrates the impact the observed be-
havior in the previous micro-benchmarks has on real applications.
Often users run small problem sizes per GPU to achieve high simu-
lation rates, making the code kernel latency sensitive. Furthermore,
LAMMPS will be impacted by host device data transfer rates due
to necessary MPI halo exchanges.

We chose a simple Lennard Jones type simulation with two
different problem sizes (32k atoms and 256k atoms per GPU) to
demonstrate this sensitivity. We only ran with one and two MPI
ranks to avoid conflating the scaling behavior of LAMMPS into the
data.

As the micro-benchmark would suggest, the most latency-
sensitive scenario (single rank, 32k atoms) performs worse on
Wombat than on the x86 system. The larger—less latency sensitive—
system performs similarly on Wombat and the x86 system while
being slower on the IBM machine due to its older GPU.

When running with two ranks, the total number of kernels in-
creases, resulting in more latency overhead and significant host-
device transfers. The data shows that Wombat performs fairly simi-
larly to the x86 system. The IBM system does not seem to benefit
from its NVLink connection, indicating that LAMMPS likely uses
regular allocations in its non-GPU-aware MPI code path.

4.4 MFC
4.4.1 Background. MFC (Multi-component Flow Code) is an open-
source fluid flow solver available at https://mflowcode.github.io [4].

Benchmark Arm+A100 x86+A100 P9+V100
latency par_for (𝜇s) 2.1 2.3 6.3
latency par_for+fence (𝜇s) 10.0 8.7 15.0
latency par_red (𝜇s) 2.3 2.7 6.2
latency par_red+fence (𝜇s) 16.0 13.0 19.0
atomic histogram (GUp/s) 0.030 0.038 0.048
atomic force update (GUp/s) 0.150 0.170 0.470
atomic mat.-assembly (GUp/s) 0.150 0.170 0.470
transfer h-d regular (GB/s) 12 11 12
transfer d-h regular (GB/s) 11 11 11
transfer h-d pinned (GB/s) 18 25 62
transfer d-h pinned (GB/s) 15 21 60
transfer h-d managed (GB/s) 17 11 8
transfer d-h managed (GB/s) 12 17 26
LAMMPS 1-MPI 32k (MAS/s) 122 148 125
LAMMPS 2-MPI 32k (MAS/s) 95 89 98
LAMMPS 1-MPI 256k (MAS/s) 420 404 320
LAMMPS 2-MPI 256k (MAS/s) 201 201 139

Table 4: Performance of Kokkos-based benchmarks on different platforms.
Latencies are measured in microseconds (us), atomic throughput in billion
updates per second (GUp/s), transfer rates in GB/s, and LAMMPS perfor-
mance in million atomsteps per second (MAS/s). Except for latencies, higher
is better.

It provides high-order accurate solutions to a wide variety of phys-
ical problems, including multi-phase compressible flows [29] and
sub-grid dispersions [3]. MFC employs a finite volume shock and
interface capturing scheme via weighted essentially non-oscillatory
(WENO) reconstruction, HLL-type approximate Riemann solvers,
and total variation diminishing time steppers.Quadrature moment
methods handle the sub-grid closures [7].

The MFC codebase is written in Fortran with MPI (and CUDA-
aware MPI) capabilities for distributed parallelism. OpenACC pro-
vides GPU offloading capability for all compute kernels A Python
front-end handles input data, execution, and metaprogramming
for compiler optimizations. The FFTW package provides access to
fast Fourier transforms for computing derivatives in cylindrical
coordinates. HDF5 and Silo handle I/O and post-processing.

4.4.2 Performance and comparisons. We next investigate the per-
formance of MFC on NVIDIA Arm HPC Development Kits, stress-
ing both the Ampere CPUs and the NVIDIA A100 GPUs. A three-
dimensional, two-phase, 16 million grid point fluid dynamics prob-
lem served this purpose, representing a typical multiphase flow
workload. The performance metric of interest is the average exe-
cution wall-clock time over 10 time steps (excluding the first five
steps). We tested performance on several available CPUs: Ampere
Altra Q80-30, Fujitsu A64FX, Cavium ThunderX2, Intel Xeon Gold
Cascade Lake (SKU 62485), and IBM POWER9. Both NVHPC and
GCC v11.1 compilers were tested with -fast and -Ofast compiler
optimization flags, respectively. GPU performance was analyzed
for the NVIDIA V100 (accessible on Summit) and A100 (accessible
on Wombat) using the NVHPC v22.1 compiler with the -Ofast flag.
All computations are double precision.

5Access provided by Pittsburgh Supercomputing Center
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# Cores Compiler Time [s] Slowdown
NVIDIA A100 — NVHPC 0.28 Ref.
NVIDIA V100 — NVHPC 0.50 1.7
2×Xeon 6248 40 NVHPC 2.7 9.6
2×Xeon 6248 40 GCC 2.1 7.5
Ampere Altra 40 NVHPC 3.9 14
Ampere Altra 40 GCC 2.7 9.6
2×POWER9 42 NVHPC 4.4 16
2×POWER9 42 GCC 3.5 12
2×ThunderX2 64 NVHPC 21 75
2×ThunderX2 64 GCC 5.4 19
A64FX 48 NVHPC 4.3 15
A64FX 48 GCC 13 46

Table 5: Comparison of wall-clock times per time step on various architec-
tures. All comparison use either the NVHPC v22.1 or GCC v11.1 compilers
as indicated. Highlighted rows indicate NVIDIA Arm HPC Development
Kit hardware.

Table 5 shows average wall-clock times and relative performance
metrics for the different hardware. The “Time” column has little
absolute meaning, with the relative performance being the most
meaningful (also shown last column). In Table 5 the CPU wall-clock
times are normalized by the number of CPU cores per chip. The re-
sults show that the A100 GPU is 1.72x faster than the V100 on OLCF
Summit, faster than even the peak double-precision performance
would anticipate between the two cards (a factor of 1.24).

A single A100 also gives a 7.3x speed-up over the fastest tested
Intel Xeon Cascade Lake. The GCC11 compiler gives shorter wall-
clock times than the NVHPC compiler on all CPU architectures.
The Ampere Altra CPUs are 1.4x faster when compared to the
POWER9s and 1.2x slower than the Intel Xeons. In addition, the
ThunderX2 CPUs are about 2x slower than the POWER9 CPUs. The
wall-clock measured using the Fujitsu A64FX CPUs are a factor
of 10 slower. However, MFC is not explicitly vectorized for Arm
instructions. We expect that this and an appropriate Fujitsu Arm
compiler are required to extract peak performance from this chip.

Figure 2 shows a time-step normalized breakdown of the dura-
tion of the most expensive MFC routines. The left three columns
indicate kernel times on GPUs and the rest are CPU-only. When
using GPU offloading, all compute kernels are executed by the GPU,
with CPU executing I/O and managing halo exchanges. It shows
that MPI communications consume a meaningful proportion of the
total time on the GPUs but are negligible on CPUs. This result is an
artifact of faster routines on the GPUs but approximately constant
MPI communication times on CPUs and GPUs. Otherwise, we see
that the routine proportions associated with the different CPU and
GPU architectures are similar.

4.5 MILC
4.5.1 Background. MILC6 is an application package concerned
with the simulation of Lattice Quantum Chromodynamics (LQCD)
to further the study of the (sub-)nuclear physics. MILC handles the
generation of gauge field configurations (sampling of the partition

6https://github.com/milc-qcd/milc_qcd
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Figure 2: Cost breakdown of different MFC subroutines on various archi-
tectures. Cases V100 and A100 have all compute kernels on the respective
GPUs, so the associated CPU architecture is not meaningful. Numbers above
the bars indicate the absolute wall-clock time (in seconds) as shown in ta-
ble 5.

function) using Markov Chain Monte Carlo methods, most com-
monly RHMC [8], and analyzes those configurations to generate
physics observables. For both, the dominant algorithm is the iter-
ative linear solver, stemming from the discretized Dirac equation
on a 4-d spacetime, giving rise to a sparse matrix, or stencil, one
must repeatedly solve. Conjugate Gradient is the solver of choice
for the commonly used HISQ discretization [13] employed by MILC
practitioners.

While popular in the LQCD community, MILC is also often used
as a benchmark for HPC systems. Node-level performance is usually
dictated by memory bandwidth or, in the case of multi-node scaling,
the network bandwidth. Specifically, the inter-process bandwidth
must be fast enough to overlay the stencil halo communication
with the local stencil application.

MILC runs on GPUs via QUDA library7. Given the propensity for
high memory bandwidth on GPUs relative to CPUs, offloading the
iterative solver to the GPU dramatically increases the inter-process
(GPU) memory bandwidth required to successfully strong scale.

4.5.2 Performance and comparisons. To probe performance, we
utilize the NERSC Medium benchmark8 and look at performance
on one and two GPUs on the same node, comparing performance
to a platform with AMD EPYC 7742 Rome CPUs and identical A100
GPUs. This platform is similar because it lacks the NVLink inter-
connect and has the same PCIe gen4 capability. However, critically
it supports the peer-to-peer PCIe protocol allowing for inter-GPU
communication without staging in CPU memory.9 We also include
measurements taken on the ThunderX2 system compared to Sum-
mit, with the latter notably supporting peer-to-peer communication

7https://github.com/lattice/quda
8https://github.com/lattice/quda/wiki/Running-the-NERSC-MILC-Benchmarks
9While NVSHMEM is supported on Rome, we chose to make a more direct comparison
by deploying MPI exclusively as the communication protocol.
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A100 V100
Wombat Rome Summit ThunderX2

GPUs 1 2 1 2 2 2
host 281 170 301 231 462 271

compute 1834 1207 1878 996 2133 1729
h-d 75.4 39.8 68.8 46.3 76 231
d-h 93.8 44.4 98.1 72.7 89 63

comms 163 110 164 99.3 213 155
other 203 113 195 103 206 229
total 2650 1684 2705 1548 3186 2645

Table 6: NERSC MILC Medium Benchmark Time Breakdown (seconds)

using NVLink. Due to memory footprint size, we include only 2
GPU results.

Table 6 breakdowns the benchmark run times. We note the fol-
lowing key results:

• Single GPU performance is roughly equivalent between
Wombat and Rome (2650 s vs. 2705 s), with a slight advantage
over Wombat.

• For Dual GPU performance, we see Rome does significantly
better (1684s vs. 1548s), with the primary deficit arising due
to the “compute".

• The non-GPU accelerated computation “host" shows that
Wombat is more than competitive with Rome.

• The raw copy bandwidth between host and device seems to
favor the Altra, regardless of the direction of the copy.

• Summit performs significantly better overall than Thun-
derX2 (2645 s versus 3186 s), with the primary deficit being
due to compute.

To better understand the poor scaling of Wombat on two GPUs,
in Figure 3 we plot the performance of the HISQ stencil for the three
precisions, the application of which is responsible for the bulk of the
time spent in the mixed-precision solver. Without communication,
we see performance parity between the two platforms. However,
when we include communication overhead, we see that Wombat’s
performance is severely impacted. In particular, we note that half-
precision on 2 GPUs is 45% slower on Wombat versus Rome. We do
not include the ThunderX2 and Summit results here for brevity, but
we note that a similar picture is painted: with ThunderX2 having a
54% performance deficit for the half-precision stencil.

4.6 NAMD and VMD
4.6.1 Background. NAMD [26] and VMD [17] are biomolecu-
lar modeling applications for molecular dynamics simulation
(NAMD10) and for preparation, analysis, and visualization (VMD11).
Researchers use NAMD and VMD to study biomolecular systems
ranging from individual proteins, large multi-protein complexes,
photosynthetic organelles, and entire viruses. Both programs sup-
port hardware platforms ranging from personal laptops, worksta-
tions, and clouds, up to the largest parallel supercomputers [1].
NAMD and VMD are written in C++, C, CUDA, and some platform-
specific SIMD vector intrinsics and assembly language for specific
performance-critical routines. NAMD is based on the Charm++
10https://www.ks.uiuc.edu/Research/namd/
11https://www.ks.uiuc.edu/Research/vmd/
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Figure 3: Performance of the QUDA–HISQ stencil with and without
overlapping communication. Wombat-1 and Rome-2 denotes Wombat and
Rome systems with one A100 GPU. Wombat-2 and Rome-2 denotes Wombat
and Rome systems with two A100 GPUs with half (H), single (S), and double
(D) precision.

parallel runtime system [18], which provides an adaptive, asynchro-
nous, distributed, message-driven, task-based parallel programming
model using C++. NAMD andVMD incorporate built-in interpreters
for Tcl and Python to provide easy-to-use scripting.

4.6.2 Notes on porting for functionality and correctness experience.
The first adaptations of NAMD and VMD to Arm hardware were
performed with SoC on-chip GPU embedded system platforms
(NVIDIA CArmA, KAYLA, Jetson TK1, and Jetson TX1), or PCIe-
attached GPU (Applied Micro X-Gene/ThunderX + Tesla K20c)
system [31]. Wombat presented no compilation barriers for NAMD
or VMD, but some minor issues are noted. The Charm++ parallel
runtime system used by NAMD did not compile cleanly with GCC
11.1.0, so GCC 10.2 was used to compile NAMD and its associated
components. Besides the CUDA toolkit, NAMD also requires FFTW
and Tcl libraries, which were easily built on Wombat. Performance
results for GPU-resident NAMD are reported in Table 7 and Table 8.

VMD used a new startup query of CPU SIMD vector instruc-
tion set extensions for runtime dispatch of performance-critical
loops to hand-vectorized CPU kernels. VMD was extended to query
Arm64 CPU vector instruction availability using the Linux kernel
getauxval() API, enabling runtime detection and kernel dispatch
for Arm64NEON and SVE vector instructions. Newhand-vectorized
data-parallel NEON and SVE kernels were developed for key atom
selection operations and for molecular orbital analysis and visual-
ization, with performance reported in [11]. The newNEON and SVE
molecular orbital kernels are direct mathematical and algorithmic
descendants from previous CPU and GPU kernels [25, 31–35].

Testing of SVE vector instructions on Fujitsu A64fx nodes demon-
strated that two recent versions of the Arm compiler toolchain (21.1
and 22.0) and LLVM (Clang) 10.0.1 generated incorrect code for
particular SVE vector intrinsics used in the VMD molecular orbital
kernel. As such, the older Arm HPC toolkit version 20.3 was used
for the reported results. Similarly, LLVM/Clang versions older than
11.0.1 did not generate correct results for SVE, so the newer version
was used for reported results.
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CPU :Cores:SMT:Threads GPU Comp. (ns/day)
ThunderX2 : 32:4:2 V100-PCIe GCC 124.9
2×Power9 : 42:4:7 V100-NVLINK XLC 125.7
2×Xeon 6134 : 16:2:4 A100-PCIe ICC 181.4
Ampere Altra : 80:1:4 A100-PCIe GCC 182.2
DGX-A100 : 128:2:2 A100-SXM4 GCC 187.5

Table 7: NAMD single-GPU performance for 92K-atom ApoA1 simula-
tion, NVE ensemble with 12Å cutoff, rigid bond constraints, multiple time
stepping with 2fs fast time step, and 4fs for PME. Green rows indicate de-
velopment kit hardware.

CPU : Cores:SMT:Threads GPU Comp. (ns/day)
ThunderX2 : 32:4:8 V100-PCIe GCC 9.43
2×Power9 : 42:4:7 V100-NVLINK XLC 10.26
2×Xeon 6134 : 16:2:8 A100-PCIe ICC 14.52
Ampere Altra : 80:1:40 A100-PCIe GCC 15.09
DGX-A100 : 128:2:8 A100-SXM4 GCC 15.87

Table 8: NAMD single-GPU performance for 1M-atom STMV simula-
tion, NVE ensemble with 12Å cutoff, rigid bond constraints, multiple time
stepping with 2fs fast time step, and 4fs for PME. Green rows indicate de-
velopment kit hardware.

4.6.3 NAMD performance and comparisons. Benchmarks are
shown for the new GPU-resident code path in NAMD [26], which
is able to fully utilize an A100 GPU. Although GPU-resident NAMD
scales across multiple GPUs on a single node, it depends on high-
performance peer-to-peer GPU communication through NVLink
using relatively fine-grained load-store operations within CUDA
kernels. The lack of this capability on ORNL Wombat limited this
study to single GPU performance and the best use of the Ampere
Altra.

Two systems are benchmarked representing the extremes of
system sizes that are well suited to single-GPU simulation, ApoA1
(92K atoms) and STMV (1M atoms), and performance is compared
with two x86-based configurations, A100–PCIe with Intel Xeon
6134 and A100–SXM4 with AMD EPYC Milan 7763 (a single A100
on DGX–A100). The results are shown in Table 7 and Table 8, where
performance is reported as the number of simulated nanoseconds
attainable per day. Each hardware configuration shows the fixed
CPU cores and SMT setting together with the number of threads
used by NAMD, in which the best performance is achieved when
running one thread per core. As the simulated atoms move, the
updating of the domain decomposition and rebuilding of device-side
data structures are still done on the CPU. The optimal number of
threads depends on the size of the system, since adding threads can
improve performance up until the thread management overhead
exceeds the available computational gain.

The A100–SXM4 configuration proves to be the fastest due to a
faster-clocked GPU and PCIe 4.0 bus. The Ampere Altra A100 con-
figuration is the next fastest due to also having a PCIe 4.0 bus. Even
though the Ampere Altra cores are SMT 1 and have independent
L1 cache memory, performance was improved, especially for the
larger system in Table 8, by staggering the thread mapping to use
just the even-numbered cores. Simulations on A100 are as much as
50% faster than on V100. Similar performance is demonstrated for

Cavium ThunderX2 and IBM POWER9, with the latter benefiting
from its low latency NVLink connection between CPU and GPU.

In addition the NAMD study, we also performed an assessment
of VMD’s performance on the Wombat testbed. Details of this
assessment can be found in [11]

4.7 PIConGPU
4.7.1 Background. PIConGPU [5] is a C++ application that is a
scalable, heterogeneous, and fully relativistic particle-in-cell (PIC)
code and provides a modern simulation framework for laser-plasma
physics and laser-matter interactions suitable for production-
quality runs. The code is used to develop advanced particle ac-
celerators for cancer radiation therapy, high-energy physics, and
photon science. PIConGPU utilizes the alpaka [19, 23] abstraction
layer and the particle-in-cell algorithm for its science case simula-
tions.

For this work, we use a configuration of PIConGPU that sim-
ulates a Weibel instability in a plasma of electrons and positrons,
i.e., where all particle species have equal mass. Three variations
with different computational intensity are considered: one with
a cubic-spline particle shape using single-precision floating point
and two with quadratic-splines using single- and double-precision,
respectively.

Structurally, PIConGPU is a stencil code with spatial domain
decomposition. To facilitate scaling benchmarks, automatic estima-
tion of suitable buffer sizes for particle exchange was introduced
into PIConGPU. Each MPI rank exchanges boundary/guard values
and particles passing the boundaries with its spatial neighbors us-
ing asynchronous point-to-point communication. The particle-grid
operations are spatially local and so fit in this scheme.

For the following performance evaluation, we used the aforemen-
tioned configuration and verified the correctness of the results by
comparing them to previous benchmark results we have collected
on other systems.

4.7.2 Performance and comparisons. Our main analysis focus
was execution on Wombat’s Ampere nodes Since PIConGPU
is not yet a fully heterogeneous code, we did separate runs for
the CPUs and the A100 GPUs. Additionally, we evaluated both
single precision and double precision data. For all benchmarks,
we used the Triangular Shape Cloud (TSC) particle form factor.
Variation across multiple grid dimensions would result in more
MPI overhead, so we restricted the benchmark variants to the 𝑧
dimension.

Experimental setup. For the CPU runs, we used one MPI rank
per node. Each MPI utilized 80 OpenMP threads. From PIConGPU’s
perspective, this constitutes a single CPU device per node. For the
GPU runs, we used two MPI ranks per node with one rank per
A100 GPU. Both configurations maximise the use of the available
resources.

Weak scaling. For the weak scaling analysis, we used a base
problem size of 100 time steps and 256×256×256 cells per computa-
tion device. Then we added another 256 cells to the 𝑧 dimension for
any additional device. Table 14 in [11] shows the setup per node in
more detail. The results of the weak scaling benchmarks are shown
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in Table 9. With the efficiency staying above 90% for all cases, it
can be demonstrated that PIConGPU scales well across multiple
Ampere compute nodes – on a previously unknown HPC system
and equally unfamiliar hardware – with minimal porting effort.

However, there are also significant differences between CPU
and GPU efficiency. This can be explained by the absolute runtime
required for the computation as shown in Table 11. The GPUs
perform the computations much faster than the CPUs. In turn, the
GPU weak scaling efficiency is affected by MPI communication
overhead much more than the CPU efficiency, likely due to GPU to
host data transfer.

Nodes Scaling Altra SP Altra DP A100 SP A100 DP
1 Weak 1.000 1.000 1.000 1.000
2 Weak 0.998 0.997 0.992 0.986
4 Weak 0.995 0.994 0.982 0.970
8 Weak 0.992 0.989 0.930 0.911

Table 9: Weak Scaling Efficiency for PIConGPU (where ideal = 1.000).
Problem size per device: 256 × 256 × 256 and 100 timesteps using TSC
Particle form factor (SP: single precision, DP: double precision).

Nodes Scaling Altra SP Altra DP A100 SP A100 DP
1 Strong 1 1 1 1
2 Strong 2.00 2.04 1.89 1.92
4 Strong 3.99 4.08 3.28 3.48
8 Strong 7.94 8.09 4.73 5.20

Table 10: Strong Scaling Factors for PIConGPU (where ideal = N). Problem
size per device: 256 × 256 × 256 and 100 timesteps using TSC Particle form
factor (SP: single precision, DP: double precision).

Nodes Altra SP Altra DP A100 SP A100 DP
1 173.91 s 209.18 s 8.56 s 14.82 s
2 174.24 s 209.79 s 8.62 s 15.03 s
4 174.78 s 210.36 s 8.72 s 15.27 s
8 175.33 s 211.50 s 9.20 s 16.27 s

Table 11: Total computation times for PIConGPU’s weak scaling bench-
mark. Problem size per device: 256 × 256 × 256 and 100 timesteps. Particle
form factor: TSC. SP: single precision, DP: double precision.

Strong scaling. For the strong scaling analysis, we used a base
problem size of 100 time steps and 256×256×𝑧 cells per computation
device. 𝑧 varies between CPUs and GPUs: For CPUs, it is 6912; for
GPUs (with less available memory), it is 1024.

Table 10 shows the strong scaling speedup achieved by running
PIConGPU across multiple nodes. The results corroborate the weak
scaling findings: the CPU runs achieve near-perfect speedups when
spread across multiple nodes, while the GPU speedups are notice-
ably below the ideal. In absolute numbers, the GPUs are again much
faster than the CPUs (as shown in Table 12), so one needs to account
for the strong impact of MPI communications.

4.8 QMCPACK
4.8.1 Background. QMCPACK[20] is an open-source, high-
performance Quantum Monte Carlo (QMC) package that solves
the many-body Schrödinger equation using a variety of statistical
approaches. The few approximations made in QMC can be system-
atically tested and reduced, potentially allowing the uncertainties

# Nodes Altra SP Altra DP A100 SP A100 DP
1 4624.76 s 5661.73 s 16.40 s 29.01 s
2 2311.38 s 2772.75 s 8.67 s 15.14 s
4 1158.34 s 1389.25 s 5.00 s 8.34 s
8 582.00 s 699.63 s 3.46 s 5.58 s

Table 12: Total computation times for PIConGPU’s strong scaling bench-
mark (100 timesteps). Particle form factor: TSC. SP: single precision, DP:
double precision.

in the predictions to be quantified at a trade-off of the significant
computational expense compared to more widely used methods
such as density functional theory. Applications include weakly
bound molecules, two-dimensional nanomaterials, and solid-state
materials such as metals, semiconductors, and insulators.

The present study’s goal is to evaluate the performance of the
Diffusion Monte Carlo (DMC) algorithm on NVIDIA A100 GPUs
and Arm Ampere CPUs using QMCPACK’s standard performance
tests. They consist of short DMC calculations of variously sized
supercells of bulk nickel oxide, 𝑁𝑖𝑂 . The computational cost of
these calculations formally scales cubically with the total electron
count, which in turn is determined by the atoms in the supercell
and their elemental composition.

4.8.2 Performance and comparisons. We set up a set of problem
sizes in the 𝑁𝑖𝑂 supercell benchmark characterized by the number
of electrons in the system. Memory usage is formally quadratic in
the electron count. As memory requirements increase, the number
of potential “walkers” that can fit in the GPU or on-node memory
reduces. Because the GPU implementation batches work over the
number of walkers, the achievable efficiency can be limited if the
batch size can not be large enough before the GPU memory is
exhausted.

Performance is measured using a throughput metric. As defined
in (1), throughput is measured as the computational cost associated
with a single DMC simulation yielding to the frequency of advanc-
ing walkers in the DMC simulation, with higher values indicating
better performance. The cost is cubic in the electron count and
linear in the walker count. Thus the throughput drops dramatically
at large electron counts.

Throughput =
walkers × blocks × steps

DMC time
(1)

GPU-only Results. The initial focus on targeting Wombat’s
NVIDIA’s A100GPUs onAmpere nodes is to understand the number
of possible “walker count per GPU device" for the 𝑁𝑖𝑂 supercell
benchmark for different system sizes. Walker counts in QMCPACK
are equivalent to the “batch size" for GPU computation, finding the
maximum number of walkers also allows for efficient use of each
available GPU. We apply a bisectional search to find the maximum
walker count limits due to memory limitations within a single
walker count range for accuracy (±1 walkers). The resulting walker
count limits per A100 GPU (40GB) are given in Table 13 which also
provides this information for reference on the V100 GPU, offering
16GB of memory, from our experiments on Summit. As the system
size increases, the benefits of the A100 memory become larger, with
the largest measured system size of 6144 electrons surpassing the
simple memory ratio between A100 and V100 of 2.5x by a factor of
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Figure 4: QMCPACK DMC throughput for Wombat and Summit nodes as
a function of the number of electrons in the 𝑁𝑖𝑂 benchmark from Table 13.

32 due to the significant additional memory overheads in storing
wavefunctions used in the calculation.

NiO supercell max walkers max walkers
electrons Summit V100 Wombat A100

48 65535 65535
96 35419 65534
192 12554 32797
384 818 2047
768 785 2047
1152 423 1244
1536 240 719
2304 96 322
3072 43 174
6144 1 32

Table 13: The maximum number of walkers (batch size) on a single Wom-
bat A100 and Summit V100 GPU.

We use the walker count on Table 13 on each system to compare
the DMC performance throughput on (1) ranging from 1 GPU to
the maximum limit using Summit’s 6 V100 GPUs and Wombat’s 2
A100 GPUs per node. Results are illustrated in Figure 4 showing
the results obtained on Wombat using the NVHPC compiler and on
Summit. As expected, single A100 GPU runs onWombat outperform
those on V100s, with significantly larger throughput for nearly all
problem sizes. When using all the available GPUs per node on each
system, we observe that for smaller cases, Summit 6 V100 GPUs
outperform in terms of throughput per node. However, Wombat’s
A100 2 GPUs are significantly more performant for the largest
and most computationally challenging case. For these system sizes,
greater GPU memory is the biggest factor in increased performance.

In addition to the study using GPU offloading, we performed
an assesment using CPU only configuration for QMCPACK. Those
results can be found in Section 4.8 in [11].

4.9 SPEC HPC 2021
4.9.1 Background. SPEChpc 2021 is a benchmark suite comprised
of real-world application codes designed for portable performance

across heterogeneous CPU and GPU architectures [2]12. SPEChpc
provides C/C++ and Fortran codes, accelerated by OpenMP,
OpenMP Offloading, OpenACC, and CUDA programming mod-
els. On Wombat, we utilized SPEChpc 2021 to evaluate single-node
performance using one to two NVIDIA A100 GPUs while varying
the number of cores bound to each GPU.

4.9.2 Performance and comparisons. We ran the SPEChpc 2021
suite on Wombat comparing the results to ORNL’s Summit. The
compilers used on Wombat were NVHPC 22.1 using OpenMP
target offloading (NVHPC-TGT) and OpenACC offloading (ACC),
and LLVM v15.0.0 using OpenMP target offloading (LLVM-TGT).
POT3D, SOMA, andWeather benchmarks data is not provided since
LLVM is not built with Fortran support. Three iterations of the tiny
benchmark were performed on Wombat. On Wombat, we tested
with combinations of one and two NVIDIA A100 GPUs. We ran
the benchmark suite using one and two ranks per GPU for a total
of four data points for each acceleration model. On Summit, we
tested the use of six V100 GPUs with one iteration using one rank
per GPU. Summit displays several runtime errors while running on
one V100 GPU because the SPEChpc tiny benchmark targets about
40 GB of memory usage, which exceeds the V100 limit of 16 GB.

Figure 5 and Figure 6 show the performance (measured as wall-
time) of the OpenMP target offloading implementations of NVHPC
and LLVM onWombat and Summit, respectively, relative to NVHPC
OpenACC. A 19x speed-up difference in runtime is observed in
Minisweep from NVHPC-ACC to NVHPC-TGT on Wombat using
a single GPU, one rank per GPU, and a 14x difference is observed
when using both A100 GPUs. This behavior is not limited to Wom-
bat, as Summit also observed an 8x slowdown from NVHPC-ACC
to NVHPC-TGT when using all 6 GPUs, one rank per GPU. This
behavior is also not limited to NVHPC’s OpenMP offloading, as
LLVM-TGT demonstrates a 4-6x slowdown on Minisweep on both
Summit and Wombat.

Using one GPU on Wombat, five of the six codes that complete
with NVHPC–TGT are slower than when using NVHPC–ACC, and
all three of the codes that complete for LLVM-TGT are slower than
when using NVHPC-ACC. On all GPUs, 7 of the 9 codes run faster
using ACC than TGT onWombat, and 5 of the 7 codes that complete
without a runtime error on Summit run faster using ACC than TGT.

4.10 SPH-EXA2
4.10.1 Background. The SPH-EXA2 project is a multidisciplinary
effort that extends the SPH-EXA[6] project and aims to scale the
Smoothed Particle Hydrodynamics (SPH) method to enable exascale
hydrodynamics simulations for Cosmology and Astrophysics. On
Wombat, we used the Sedov-Taylor blast wave explosion test [14]
to simulate a spherical shock generated by the instantaneous injec-
tion of thermal energy at a single point in a static uniform back-
ground. This test requires the code to simulate shock-fronts while
correctly maintaining spherical symmetry and conservation laws.
SPH-EXA213 is open source, written in C++17, parallelized with
MPI and OpenMP, and accelerated with CUDA and HIP.

12https://www.spec.org/hpc2021/
13https://github.com/unibas-dmi-hpc/SPH-EXA
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Figure 5: Performance of SPEChpc 2021 onWombat using OpenMP Target
(TGT) offloading, relative to OpenACC.

Figure 6: Performance of SPEChpc 2021 on Summit using OpenMP Target
Offloading (TGT) offloading, relative to OpenACC.

4.10.2 Performance and comparisons. To investigate the impact of
using the Arm CPU on SPH-EXA2, we conduct tests on three differ-
ent systems within the Wombat platform (described in Section 2.2)
and two x86_64 non-Arm systems (described in [11, Table 20]). We
report and compare the performance results of a CPU-only run and
a CPU+GPU run using a single node executing the Sedov–Taylor
blast test case with 2003 particles for 800 time-steps.

CPU-only Results. Figure 7 shows the results for the
MPI+OpenMP code version of SPH-EXA2 on CPU only setup. The
average time in seconds per time-step of the simulation is shown on
the top chart (lower is better), and the achieved iteration through-
put per minute of the simulation is shown on the bottom chart
(higher is better). On Wombat, the best performance is obtained
with the GNU compiler on the Ampere N1 CPU, while the overall
best performance is achieved on x86_64 CPUs. Systems with fewer
cores per socket lead to lower overall performance than those with
higher core counts. Additionally, the results on Marvel ThunderX2
and Fujitsu A64FX systems show that the SPH-EXA2 code compiled
with the GNU compiler outperforms the Arm compiler.

Further code profiling using the Arm Performance Reports tool
allowed us to identify the cause of the performance difference
between Ampere N1 and Fujitsu A64FX CPUs since the former has
fewer cores but performs better in our tests. Profiling showed that a
higher number of L2 cache misses and stalled cycles on the Fujitsu
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Figure 7: SPH-EXA2 execution using MPI+OpenMP on the CPU-only
setup with 2003 particles and 800 time-steps for the Sedov-Taylor test.

sph-exa sedov-cuda HtoD HtoD DtoH DtoH
-n200 -s800 N1 Clake N1 Clake
Size (GB) 1744 1744 1488 1488
Time (s) 134 302 125 214

Bandwidth (GB/s) 13.0 5.8 11.9 7.0
Table 14: GPU: CUDA memcpy operations between host and device

A64FX CPUs cause performance degradation. We believe this is
due to the Ampere N1 having only 1 NUMA node compared to
the 4 NUMA nodes of Fujitsu A64FX. Further analysis is needed to
use the vectorization support (SVE) better and increase compute
performance.

CPU+GPU Results. Figure 8 shows the execution times of the
MPI+OpenMP+CUDA version of the SPH-EXA2 code. The Ampere
N1 system on Wombat slightly outperforms the x86_64 reference
system. The difference in performance is caused by the Ampere
N1 having PCIe 4.0 compared to the x86_64 reference system’s
PCIe 3.0 port, which creates the difference between data transfer
rates between the CPU and the GPU. The size and speed of CUDA
memcpy operations reported in Table 14 show that the same amount
of data was transferred between host (H) and device (D) on both
systems, with higher transfer rates on Wombat’s Ampere N1.
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Figure 8: Execution times of SPH-EXA2 executing the Sedov-Taylor blast
test (MPI+OpenMP+CUDA, CPU+GPU) for 800 time-steps with 2003 parti-
cles, using 1 NVIDIA A100-PCIe-40GB per compute node.

Using Nsight, SPH-EXA2’s top kernels were identified as
compute-bound, and the measured performance shows that us-
ing Arm as the host CPU has no negative impact on the execution
time of the kernels.

5 RELATEDWORK
Prior work has primarily focused on the evaluation of HPC applica-
tions on the Arm Cavium ThunderX2 with the Aries interconnect
as part of the Isambard supercomputer [24] and the A64FX proces-
sor with TOFU interconnect in the Fugaku system [28] and with
InfiniBand interconnect [12] on the Okami system. Other related
work has looked at Arm-based performance portability with Thun-
derX2 and previous generation Ampere nodes [9] and concludes
that Kokkos and OpenMP provide performance portability across
Arm and x86 platforms. A more recent update adds SYCL evaluation
but comes to similar conclusions [10].

In terms of more cloud-HPC-focused efforts, a recent hackathon
run by the non-profit Arm HPC User Group, AWS, and Arm sup-
ported the testing and development of HPC codes on AWS’s cus-
tom Graviton2 instances. This event, the AHUG Hackathon: Cloud
Hackathon for Arm-based HPC 14, supported 30 teams to investi-
gate the top HPC applications used on AWS and helped test Spack
packages with flags for the Graviton2 setup as well as Reframe test-
ing scripts for Arm and x86 platforms. The effort focused on porting
several HPC applications running on Arm, including a full set of
mini-apps and applications 15, but it did not include any accelerated
nodes. This work complements other HPC application efforts on

14https://community.arm.com/arm-community-blogs/b/high-performance-
computing-blog/posts/aws-arm-ahug-hpc-cloud-hackathon
15https://github.com/arm-hpc-user-group/Cloud-HPC-Hackathon-2021/tree/main/
Applications

AWS, including Nalu 16, a CFD modeling code, and NWChem 17, a
widely used quantum chemistry code.

6 CONCLUSIONS
In this work, we used the Wombat testbed at the Oak Ridge Lead-
ership Computing Facility (OLCF) to study the readiness and us-
ability of a modern GPU-accelerated Arm-based HPC platform, the
NVIDIA Arm HPC Developer Kit. Ten representative applications
from different scientific domains, and using a variety of program-
ming models and languages were selected, built on the platform
and tested for correctness. Wherever possible, performance was
compared with other leading HPC platforms used for production
science, as well as other Arm-based platforms that are part of the
Wombat system.

As seen from the various application experiences, the porting
process was straightforward and mostly required minor modifica-
tions to the build systems to compile and run on the target platform.
The availability of a fairly mature set of compilers that cover the
gamut of used programming models was crucial in achieving this
seamless porting process. Of particular note, the availability of the
NVIDIA HPC SDK facilitated the porting process or those applica-
tions that currently use this tool-chain on other GPU-accelerated
supercomputers, such as Summit. Furthermore, the maturity of
Arm support in the Spack package management system greatly
facilitated the deployment of third-party tools and libraries needed
by the various application teams.

While exhaustive performance optimization was not a primary
goal of this work, we carried out preliminary performance mea-
surements to assess the overall platform readiness. For applications
considered GPU-dominant, performance improvements were com-
mensurate with the hardware capabilities of the NVIDIA Ampere
GPU (A100) relative to the previous generation NVIDIA Volta GPU
(V100), and using an Arm-based CPU did not adversely impact the
outcome. We carried out several CPU-only experiments for a subset
of the applications where the code can be configured to run only
on the CPU. We observed that the Ampere CPU’s performance
was generally competitive with leading x86-64 and Power9 CPUs.
It should be noted that the lack of an appropriate fast and fully
RDMA-capable CPU-GPU bus in the Wombat testbed (similar to
NVIDIA NVLink on POWER9 CPU in Summit or AMD’s xGMI
in the newly installed Frontier supercomputer at OLCF) and the
lack of NVLink across the CPU and GPUs adversely impacted per-
formance for applications that require fast data movement across
the different processing elements in the platform. Exploiting these
features requires a holistic design that combines needed system
software with a hardware design that adopts a GPU-centric plat-
form design. Such a design can be found in systems such as NVIDIA
DGX18 or Frontier19, where the GPUs are connected directly to
the NICs on the node. In the near future, more tightly integrated

16https://community.arm.com/arm-community-blogs/b/high-performance-
computing-blog/posts/low-mach-number-cfd-modeling-with-nalu-on-graviton2-
aws-m6g
17https://www.youtube.com/watch?v=xq_sj4nAk3k
18https://www.nvidia.com/en-au/data-center/dgx-systems/
19https://olcf.ornl.gov/wp-content/uploads/Frontiers-Architecture-Frontier-
Training-Series-final.pdf
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cache-coherent CPU-GPU platforms (e.g. NVIDIA Grace Hopper Su-
perchip) will further enhance developer productivity and platform
programmability.

Evaluating testbeds is a continuous process. As our next step,
we plan to investigate the Arm platform’s usability for large data
and machine learning workloads and the exploitation of NVIDIA
BlueField Data Processing units (DPU). As more Arm-based plat-
forms from various vendors become available in the market, we
anticipate continuing this evaluation effort to better understand the
platform’s strengths and potential incompatibilities with different
classes of applications.

ACKNOWLEDGMENTS
This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
(Contract No. DE-AC05-00OR22725). Assessment of QMCPACK
and ExaStar was supported by the Exascale Computing Project (17-
SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.
VMD and NAMD work is supported by NIH grant P41-GM104601.
S. H. Bryngelson acknowledges the use of the Extreme Science
and Engineering Discovery Environment (XSEDE) under alloca-
tion TG-PHY210084, OLCF Summit allocation CFD154, hardware
awards from the NVIDIA Academic Hardware Grants program,
and support from the US Office of Naval Research under Grant No.
N000142212519 (PM Dr. Julie Young). E. MacCarthy acknowledges
Yang Zhang of University of Michigan, Ann Arbor, for providing
the I-TASSER code. Work on PIConGPU was partially funded by
the Center of Advanced Systems Understanding which is financed
by Germany’s Federal Ministry of Education and Research and by
the Saxon Ministry for Science, Culture and Tourism with tax funds
on the basis of the budget approved by the Saxon State Parliament.
The work in SPH-EXA2 is supported by the Swiss Platform for Ad-
vanced Scientific Computing (PASC) project SPH-EXA2 (2021-2024)
and as part of SKACH consortium through funding from the Swiss
State Secretariat for Education, Research and Innovation (SERI).

REFERENCES
[1] Bilge Acun, David J. Hardy, Laxmikant Kale, Ke Li, James C. Phillips, and John E.

Stone. 2018. Scalable Molecular Dynamics with NAMD on the Summit System.
IBM Journal of Research and Development 62, 6 (2018), 4:1–4:9. https://doi.org/10.
1147/JRD.2018.2888986

[2] Holger Brunst, Sunita Chandrasekaran, Florina Ciorba, Nick Hagerty, Robert Hen-
schel, Guido Juckeland, Junjie Li, Veronica G. Melesse Vergara, Sandra Wienke,
and Miguel Zavala. 2022. First Experiences in Performance Benchmarking with
the New SPEChpc 2021 Suites. https://doi.org/10.48550/ARXIV.2203.06751

[3] S. H. Bryngelson, K. Schmidmayer, and T. Colonius. 2019. A quantitative compar-
ison of phase-averaged models for bubbly, cavitating flows. International Journal
of Multiphase Flow 115 (2019), 137–143. https://doi.org/10.1016/j.ijmultiphaseflow.
2019.03.028

[4] Spencer H Bryngelson, Kevin Schmidmayer, Vedran Coralic, Jomela C Meng,
Kazuki Maeda, and Tim Colonius. 2021. MFC: An open-source high-order multi-
component, multi-phase, and multi-scale compressible flow solver. Computer
Physics Communications 266 (2021), 107396.

[5] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juckeland, T. Kluge,
W. E. Nagel, R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, and R. Widera. 2013.
Radiative Signatures of the Relativistic Kelvin–Helmholtz Instability. In Proceed-
ings of the International Conference on High Performance Computing, Networking,
Storage and Analysis (Denver, Colorado) (SC ’13). ACM, New York, NY, USA,
Article 5, 12 pages. https://doi.org/10.1145/2503210.2504564

[6] Aurélien Cavelan, Rubén M. Cabezón, Michal Grabarczyk, and Florina M. Ciorba.
2020. A Smoothed Particle Hydrodynamics Mini-App for Exascale. In Proceedings

of the Platform for Advanced Scientific Computing Conference (Geneva, Switzer-
land) (PASC ’20). Association for Computing Machinery, New York, NY, USA,
Article 11, 11 pages. https://doi.org/10.1145/3394277.3401855

[7] A. Charalampopoulos, S. H. Bryngelson, T. Colonius, and T. P. Sapsis. 2022.
Hybrid quadrature moment method for accurate and stable representation of
non-Gaussian processes applied to bubble dynamics. Philosophical Transactions
of the Royal Society A (2022).

[8] M. A. Clark and A. D. Kennedy. 2007. Accelerating staggered-Fermion dynamics
with the rational hybrid Monte Carlo algorithm. Physical Review D 75, 1 (2007).
https://doi.org/10.1103/physrevd.75.011502

[9] Tom Deakin, Simon McIntosh-Smith, James Price, Andrei Poenaru, Patrick Atkin-
son, Codrin Popa, and Justin Salmon. 2019. Performance Portability across
Diverse Computer Architectures. In 2019 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC). 1–13. https:
//doi.org/10.1109/P3HPC49587.2019.00006

[10] Tom Deakin, Andrei Poenaru, Tom Lin, and Simon McIntosh-Smith. 2020. Track-
ing Performance Portability on the Yellow Brick Road to Exascale. In 2020
IEEE/ACM International Workshop on Performance, Portability and Productivity in
HPC (P3HPC). 1–13. https://doi.org/10.1109/P3HPC51967.2020.00006

[11] Wael Elwasif, William Godoy, Nick Hagerty, J. Austin Harris, Oscar Hernan-
dez, Balint Joo, Paul Kent, Damien Lebrun-Grandie, Elijah Maccarthy, Veronica
G. Melesse Vergara, Bronson Messer, Ross Miller, Sarp Opal, Sergei Bastrakov,
Michael Bussmann, Alexander Debus, Klaus Steinger, Jan Stephan, Rene Widera,
Spencer H. Bryngelson, Henry Le Berre, Anand Radhakrishnan, Jefferey Young,
Sunita Chandrasekaran, Florina Ciorba, Osman Simsek, Kate Clark Filippo Spiga,
Jeff Hammond, John E. Stone. David Hardy, Sebastian Keller, and Jean-Guillaume
Piccinali. Christian Trott. 2022. Application Experiences on a GPU-Accelerated
Arm-based HPC Testbed. https://doi.org/10.48550/ARXIV.2209.09731

[12] Catherine Feldman, Benjamin Michalowicz, Eva Siegmann, Tony Curtis, Alan
Calder, and Robert Harrison. 2022. Experiences with Porting the FLASH Code to
Ookami, an HPE Apollo 80 A64FX Platform. HPCAsia 2022 (to appear) (2022).

[13] E. Follana, Q. Mason, C. Davies, K. Hornbostel, G. P. Lepage, J. Shigemitsu, H.
Trottier, and K. Wong. 2007. Highly improved staggered quarks on the lattice
with applications to charm physics. Physical Review D 75, 5 (mar 2007). https:
//doi.org/10.1103/physrevd.75.054502

[14] Nicholas Frontiere, J. D. Emberson, Michael Buehlmann, Joseph Adamo, Salman
Habib, Katrin Heitmann, and Claude-AndrÃ© Faucher-GiguÃ¨re. 2022. Simulat-
ing Hydrodynamics in Cosmology with CRK-HACC. https://doi.org/10.48550/
ARXIV.2202.02840

[15] Todd Gamblin, Matthew P. LeGendre, Michael R. Collette, Gregory L. Lee, Adam
Moody, Bronis R. de Supinski, and W. Scott Futral. 2015. The Spack Package
Manager: Bringing order to HPC software chaos. In Supercomputing 2015 (SC’15).
Austin, Texas.

[16] J. Austin Harris, Ran Chu, Sean M Couch, Anshu Dubey, Eirik Endeve, Antigoni
Georgiadou, Rajeev Jain, Daniel Kasen, M P Laiu, OE B Messer, Jared Oâ€™Neal,
Michael A Sandoval, and Klaus Weide. 2022. Exascale models of stellar explo-
sions: Quintessential multi-physics simulation. The International Journal of High
Performance Computing Applications 36, 1 (2022), 59–77. https://doi.org/10.1177/
10943420211027937 arXiv:https://doi.org/10.1177/10943420211027937

[17] William Humphrey, Andrew Dalke, and Klaus Schulten. 1996. VMD – Visual
Molecular Dynamics. Journal of Molecular Graphics 14, 1 (1996), 33–38. https:
//doi.org/10.1016/0263-7855(96)00018-5

[18] Laxmikant V. Kalé and Gengbin Zheng. 2013. Chapter 1: The Charm++ Pro-
gramming Model. In Parallel Science and Engineering Applications: The Charm++
Approach (1st ed.), Laxmikant V. Kale and Abhinav Bhatele (Eds.). CRC Press,
Inc., Boca Raton, FL, USA, Chapter 1, 1–16. https://doi.org/10.1201/b16251

[19] Jeffrey Kelling, Sergei Bastrakov, Alexander Debus, Thomas Kluge, Matt Lein-
hauser, Richard Pausch, Klaus Steiniger, Jan Stephan, René Widera, Jeff Young,
et al. 2021. Challenges Porting a C++ Template-Metaprogramming Abstraction
Layer to Directive-based Offloading. arXiv preprint arXiv:2110.08650 (2021).

[20] P. R. C. Kent, Abdulgani Annaberdiyev, Anouar Benali, M. Chandler Bennett,
Edgar JosuÃ© Landinez Borda, Peter Doak, Hongxia Hao, Kenneth D. Jordan,
Jaron T. Krogel, Ilkka KylÃ¤npÃ¤Ã¤, Joonho Lee, Ye Luo, Fionn D. Malone,
Cody A. Melton, Lubos Mitas, Miguel A. Morales, Eric Neuscamman, Fernando A.
Reboredo, Brenda Rubenstein, Kayahan Saritas, Shiv Upadhyay, Guangming
Wang, Shuai Zhang, and Luning Zhao. 2020. QMCPACK: Advances in the devel-
opment, efficiency, and application of auxiliary field and real-space variational
and diffusion quantum Monte Carlo. The Journal of Chemical Physics 152 (2020),
174105. https://doi.org/10.1063/5.0004860

[21] M. Paul Laiu, Eirik Endeve, Ran Chu, J. Austin Harris, and O. E. Bronson
Messer. 2021. A DG-IMEX Method for Two-moment Neutrino Transport: Non-
linear Solvers for Neutrino-Matter Coupling. Astrophys. J., Suppl. Ser. 253, 2,
Article 52 (April 2021), 52 pages. https://doi.org/10.3847/1538-4365/abe2a8
arXiv:2102.02186 [astro-ph.HE]

[22] Elijah A MacCarthy, Chengxin Zhang, Yang Zhang, and KC Dukka. 2022. GPU-I-
TASSER: a GPU accelerated I-TASSER protein structure prediction tool. Bioinfor-
matics (2022).

48

https://doi.org/10.1147/JRD.2018.2888986
https://doi.org/10.1147/JRD.2018.2888986
https://doi.org/10.48550/ARXIV.2203.06751
https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.028
https://doi.org/10.1016/j.ijmultiphaseflow.2019.03.028
https://doi.org/10.1145/2503210.2504564
https://doi.org/10.1145/3394277.3401855
https://doi.org/10.1103/physrevd.75.011502
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1109/P3HPC49587.2019.00006
https://doi.org/10.1109/P3HPC51967.2020.00006
https://doi.org/10.48550/ARXIV.2209.09731
https://doi.org/10.1103/physrevd.75.054502
https://doi.org/10.1103/physrevd.75.054502
https://doi.org/10.48550/ARXIV.2202.02840
https://doi.org/10.48550/ARXIV.2202.02840
https://doi.org/10.1177/10943420211027937
https://doi.org/10.1177/10943420211027937
https://arxiv.org/abs/https://doi.org/10.1177/10943420211027937
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1201/b16251
https://doi.org/10.1063/5.0004860
https://doi.org/10.3847/1538-4365/abe2a8
https://arxiv.org/abs/2102.02186


Application Experiences on a GPU-Accelerated Arm-based HPC Testbed HPCASIAWORKSHOP 2023, February 27-March 2, 2023, Raffles Blvd, Singapore

[23] Alexander Matthes, RenÃ© Widera, Erik Zenker, Benjamin Worpitz, Axel Huebl,
and Michael Bussmann. 2017. Tuning and Optimization for a Variety of Many-
Core Architectures Without Changing a Single Line of Implementation Code
Using the Alpaka Library. In High Performance Computing, Julian M. Kunkel, Rio
Yokota, Michela Taufer, and John Shalf (Eds.). Springer International Publishing,
Cham, 496–514. https://doi.org/10.1007/978-3-319-67630-2_36

[24] Simon McIntosh-Smith, James Price, Andrei Poenaru, and Tom Deakin. 2020.
Benchmarking the first generation of production quality Arm-based supercom-
puters. Concurrency and Computation: Practice and Experience 32, 20 (2020),
e5569.

[25] Marcelo C. R. Melo, Rafael C. Bernardi, Till Rudack, Maximilian Scheurer,
Christoph Riplinger, James C. Phillips, Julio D. C. Maia, Gerd B. Rocha, João V.
Ribeiro, John E. Stone, Frank Nesse, Klaus Schulten, and Zaida Luthey-Schulten.
2018. NAMD goes quantum: An integrative suite for hybrid simulations. Nature
Methods 15 (2018), 351–354.

[26] James C. Phillips, David J. Hardy, Julio D. C. Maia, John E. Stone, João V. Ribeiro,
Rafael C. Bernardi, Ronak Buch, Giacomo Fiorin, Jérôme Hénin, Wei Jiang, Ryan
McGreevy, Marcelo C. R. Melo, Brian Radak, Robert D. Skeel, Abhishek Singharoy,
Yi Wang, Benoît Roux, Aleksei Aksimentiev, Zaida Luthey-Schulten, Laxmikant V.
Kalé, Klaus Schulten, Christophe Chipot, and Emad Tajkhorshid. 2020. Scalable
molecular dynamics on CPU and GPU architectures with NAMD. Journal of
Chemical Physics 153 (2020), 044130. https://doi.org/10.1063/5.0014475

[27] Nikola Rajovic, Alejandro Rico, Nikola Puzovic, Chris Adeniyi-Jones, and Alex
Ramirez. 2014. Tibidabo: Making the case for an ARM-based HPC system. Future
Generation Computer Systems 36 (2014), 322–334.

[28] Mitsuhisa Sato, Yutaka Ishikawa, Hirofumi Tomita, Yuetsu Kodama, Tetsuya Oda-
jima, Miwako Tsuji, Hisashi Yashiro, Masaki Aoki, Naoyuki Shida, Ikuo Miyoshi,
Kouichi Hirai, Atsushi Furuya, Akira Asato, Kuniki Morita, and Toshiyuki
Shimizu. 2020. Co-Design for A64FX Manycore Processor and “Fugaku”. In SC20:
International Conference for High Performance Computing, Networking, Storage
and Analysis. 1–15. https://doi.org/10.1109/SC41405.2020.00051

[29] K. Schmidmayer, S. H. Bryngelson, and T. Colonius. 2020. An assessment of
multicomponent flow models and interface capturing schemes for spherical
bubble dynamics. J. Comput. Phys. 402 (2020), 109080. https://doi.org/10.1016/j.
jcp.2019.109080

[30] N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. 2017. The
ARM Scalable Vector Extension. IEEE Micro 37, 02 (mar 2017), 26–39. https:
//doi.org/10.1109/MM.2017.35

[31] John E. Stone, Michael J. Hallock, James C. Phillips, Joseph R. Peterson, Zaida
Luthey-Schulten, and Klaus Schulten. 2016. Evaluation of Emerging Energy-
Efficient Heterogeneous Computing Platforms for Biomolecular and Cellular
Simulation Workloads. 2016 IEEE International Parallel and Distributed Processing
Symposium Workshop (IPDPSW) (2016), 89–100. https://doi.org/10.1109/IPDPSW.
2016.130

[32] John E. Stone, David J. Hardy, Jan Saam, Kirby L. Vandivort, and Klaus Schul-
ten. 2011. GPU-Accelerated Computation and Interactive Display of Molecular
Orbitals. In GPU Computing Gems, Wen-mei Hwu (Ed.). Morgan Kaufmann
Publishers, Chapter 1, 5–18.

[33] John E. Stone, David J. Hardy, Ivan S. Ufimtsev, and Klaus Schulten. 2010. GPU-
Accelerated Molecular Modeling Coming of Age. J. Molecular Graphics and
Modelling 29 (2010), 116–125.

[34] John E. Stone, Antti-Pekka Hynninen, James C. Phillips, and Klaus Schulten.
2016. Early Experiences Porting the NAMD and VMD Molecular Simulation and
Analysis Software to GPU-Accelerated OpenPOWER Platforms. International
Workshop on OpenPOWER for HPC (IWOPH’16) (2016), 188–206.

[35] John E. Stone, Jan Saam, David J. Hardy, Kirby L. Vandivort, Wen-mei W. Hwu,
and Klaus Schulten. 2009. High Performance Computation and Interactive Dis-
play of Molecular Orbitals on GPUs and Multi-core CPUs. In Proceedings of the
2nd Workshop on General-Purpose Processing on Graphics Processing Units, ACM
International Conference Proceeding Series, Vol. 383. ACM, New York, NY, USA,
9–18.

[36] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu, W. M. Brown,
P. S. Crozier, P. J. in ’t Veld, A. Kohlmeyer, S. G. Moore, T. D. Nguyen, R. Shan,
M. J. Stevens, J. Tranchida, C. Trott, and S. J. Plimpton. 2022. LAMMPS - a
flexible simulation tool for particle-based materials modeling at the atomic,
meso, and continuum scales. Comp. Phys. Comm. 271 (2022), 108171. https:
//doi.org/10.1016/j.cpc.2021.108171

[37] Christian R. Trott, Damien Lebrun-GrandiÃ©, Daniel Arndt, Jan Ciesko, Vinh
Dang, Nathan Ellingwood, Rahulkumar Gayatri, Evan Harvey, Daisy S. Hollman,
Dan Ibanez, Nevin Liber, Jonathan Madsen, Jeff Miles, David Poliakoff, Amy
Powell, Sivasankaran Rajamanickam, Mikael Simberg, Dan Sunderland, Bruno
Turcksin, and Jeremiah Wilke. 2022. Kokkos 3: Programming Model Extensions
for the Exascale Era. IEEE Transactions on Parallel and Distributed Systems 33, 4
(2022), 805–817. https://doi.org/10.1109/TPDS.2021.3097283

[38] Verónica G Vergara Larrea, Wayne Joubert, Michael J Brim, Reuben D Budiardja,
Don Maxwell, Matt Ezell, Christopher Zimmer, Swen Boehm, Wael Elwasif,

Sarp Oral, et al. 2019. Scaling the summit: deploying the worldâ€™s fastest
supercomputer. In International Conference on High Performance Computing.
Springer, 330–351.

[39] Wei Zheng, Chengxin Zhang, Eric W Bell, and Yang Zhang. 2019. I-TASSER
gateway: a protein structure and function prediction server powered by XSEDE.
Future Generation Computer Systems 99 (2019), 73–85.

49

https://doi.org/10.1007/978-3-319-67630-2_36
https://doi.org/10.1063/5.0014475
https://doi.org/10.1109/SC41405.2020.00051
https://doi.org/10.1016/j.jcp.2019.109080
https://doi.org/10.1016/j.jcp.2019.109080
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/IPDPSW.2016.130
https://doi.org/10.1109/IPDPSW.2016.130
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1109/TPDS.2021.3097283

	Abstract
	1 Introduction
	2 Wombat Testbed
	2.1 Background
	2.2 Hardware
	2.3 Programming Environment

	3 Evaluation methodology
	3.1 Porting for functionality and correctness

	4 Applications
	4.1 ExaStar
	4.2 GPU-I-TASSER
	4.3 LAMMPS and Kokkos
	4.4 MFC
	4.5 MILC
	4.6 NAMD and VMD
	4.7 PIConGPU
	4.8 QMCPACK
	4.9 SPEC HPC 2021
	4.10 SPH-EXA2

	5 Related Work
	6 Conclusions
	Acknowledgments
	References

